Объект математического моделирования. Основные понятия математического моделирования

Главная / Квартира

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

ВВЕДЕНИЕ

Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этой методологии состоит в замене исходного объекта его «образом» - математической моделью - и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот «третий метод» познания, конструирования, проектирования сочетает в себе многие достоинства как теории, так и эксперимента. Работа не с самим объектом (явлением, процессом), а с его моделью дает возможность безболезненно, относительно быстро и без существенных затрат исследовать его свойства и поведение в любых мыслимых ситуациях (преимущества теории). В то же время вычислительные (компьютерные, симуляционные, имитационные) эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических инструментов информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам (преимущества эксперимента). Неудивительно, что методология математического моделирования бурно развивается, охватывая все новые сферы - от разработки технических систем и управления ими до анализа сложнейших экономических и социальных процессов.

Элементы математического моделирования использовались с самого начала появления точных наук, и не случайно, что некоторые методы вычислений носят имена таких корифеев науки, как Ньютон и Эйлер, а слово «алгоритм» происходит от имени средневекового арабского ученого Аль-Хорезми. Второе «рождение» этой методологии пришлось на конец 40-х-начало 50-х годов XX века и было обусловлено по крайней мере двумя причинами. Первая из них - появление ЭВМ (компьютеров), хотя и скромных по нынешним меркам, но тем не менее избавивших ученых от огромной по объему рутинной вычислительной работы. Вторая - беспрецедентный социальный заказ - выполнение национальных программ СССР и США по созданию ракетно-ядерного щита, которые не могли быть реализованы традиционными методами. Математическое моделирование справилось с этой задачей: ядерные взрывы и полеты ракет и спутников были предварительно «осуществлены» в недрах ЭВМ с помощью математических моделей и лишь затем претворены на практике. Этот успех во многом определил дальнейшие достижения методологии, без применения которой в развитых странах ни один крупномасштабный технологический, экологический или экономический проект теперь всерьез не рассматривается (сказанное справедливо и по отношению к некоторым социально-политическим проектам).

Сейчас математическое моделирование вступает в третий принципиально важный этап своего развития, «встраиваясь» в структуры так называемого информационного общества. Впечатляющий прогресс средств переработки, передачи и хранения информации отвечает мировым тенденциям к усложнению и взаимному проникновению различных сфер человеческой деятельности. Без владения информационными «ресурсами» нельзя и думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед мировым сообществом. Однако информация как таковая зачастую мало что дает для анализа и прогноза, для принятия решений и контроля за их исполнением. Нужны надежные способы переработки информационного «сырья» в готовый «продукт», т. е. в точное знание. История методологии математического моделирования убеждает: она может и должна быть интеллектуальным ядром информационных технологий, всего процесса информатизации общества.

Технические, экологические, экономические и иные системы, изучаемые современной наукой, больше не поддаются исследованию (в нужной полноте и точности) обычными теоретическими методами. Прямой натурный эксперимент над ними долог, дорог, часто либо опасен, либо попросту невозможен, так как многие из этих систем существуют в «единственном экземпляре». Цена ошибок и просчетов в обращении с ними недопустимо высока. Поэтому математическое (шире - информационное) моделирование является неизбежной составляющей научно-технического прогресса.

Рассматривая вопрос шире, напомним, что моделирование присутствует почти во всех видах творческой активности людей различных «специальностей» - исследователей и предпринимателей, политиков и военачальников. Привнесение в эти сферы точного знания помогает ограничить интуитивное умозрительное «моделирование», расширяет поле приложений рациональных методов. Конечно же, математическое моделирование плодотворно лишь при выполнении хорошо известных профессиональных требований: четкая формулировка основных понятий и предположений, апостериорный анализ адекватности используемых моделей, гарантированная точность вычислительных алгоритмов и т. д. Если же говорить о моделировании систем с участием «человеческого фактора», т. е. трудно формализуемых объектов, то к этим требованиям необходимо добавить аккуратное разграничение математических и житейских терминов (звучащих одинаково, но имеющих разный смысл), осторожное применение уже готового математического аппарата к изучению явлений и процессов (предпочтителен путь «от задачи к методу», а не наоборот) и ряд других.

Решая проблемы информационного общества, было бы наивно уповать только на мощь компьютеров и иных средств информатики. Постоянное совершенствование триады математического моделирования и ее внедрение в современные информационно-моделирующие системы - методологический императив. Лишь его выполнение дает возможность получать так нужную нам высокотехнологичную, конкурентоспособную и разнообразную материальную и интеллектуальную продукцию.

Выбранная мною тема является актуальной в современной математике и ее приложениях. В современном научном подходе в исследовании естественных, технических и социально-экономических объектов возрастает значение математического моделирования происходящих в них процессов. Натурное изучение поведения объектов и систем в таких режимах и условиях невозможно либо затруднительно, что вынуждает применять методы математического моделирования.

Цель данной курсовой работы это - научиться использовать методы математического моделирования для исследования различных природных социальных процессов.

Задачи поставленные для достижения цели:

n Изучить теоретические вопросы математического моделирования, классификация моделей.

ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно – объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Модель - материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, карта, блок-схема алгоритма, ноты и т.п.), которые упрощенно отображают самые существенные свойства объекта исследования.

Любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

В основе термина «модель» лежит латинское слово modulus - мера, образец. Модель – это заместитель реального объекта исследования. Модель всегда проще исследуемого объекта. При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства.

Но все элементы и связи в создаваемой модели и не следует учитывать. Нужно лишь выделить наиболее характерные, доминирующие составляющие, которые в подавляющей степени определяют основные свойства объекта исследования. В результате объект исследования заменяется некоторым упрощенным подобием, но обладающим характерными, главными свойствами, аналогичными свойствам объекта исследования. Появившийся вследствие проведенной подмены новый объект (или абстракция) принято называть моделью объекта исследования.

Для составления математических моделей можно использовать любые математические средства - дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в математическом моделировании математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

О большом значении математики для всех других наук (в том числе и моделирования) говорит следующий факт. Великий английский физик И.Ньютон (1643-1727 г.г.) в середине 17-го века познакомился с работами Рене Декарта и Пьера Гассенди. В этих работах утверждалось, что все строение мира может быть описано математическими формулами. Под влиянием этих трудов И.Ньютон стал усиленно изучать математику. Сделанный им вклад в физику и математику широко известен.

Математическое моделирование - метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом.

Для математического моделирования характерно то, что процессы функционирования объекта записывают в виде математических соотношений (алгебраические, интегральные), записывают в виде логических условий.

Дифференциальные уравнения являются одним из основных средств составления математических моделей, наиболее широко применяемых при решении математических задач. При исследовании физических процессов, решении различных прикладных задач, как правило, не удается непосредственно найти законы, которые связывают величины, характеризующие исследуемые явления. Обычно легче устанавливаются зависимости между теми же величинами и их производными или дифференциалами. Соотношения такого рода и называются дифференциальными уравнениями. Возможности и правила составления дифференциальных уравнений определяются знаниями законов той области науки, с которой связана природа изучаемой задачи. Так, например, в механике могут использоваться законы Ньютона, в теории скоростей химических реакций – закон действия масс и т.д. Однако на практике часто встречаются случаи, когда законы, которые могли бы позволить составить дифференциальное уравнение, неизвестны. Тогда прибегают к различным упрощающим предположениям, касающимся протекания процесса при малых изменениях параметров-переменных. К дифференциальным уравнениям в таком случае приводит предельный переход. Вопрос соответствия математической модели и реального явления решается на основе анализа результатов, опытов и сравнения их с поведением решения полученного дифференциального уравнения

Решение практических задач математическими методами последовательно осуществляется путем формулировки задачи (разработки математической модели), выбора метода исследования полученной математической модели, анализа полученного математического результата. Математическая формулировка задачи обычно представляется в виде геометрических образов, функций, систем уравнений и т.п. Описание объекта (явления) может быть представлено с помощью непрерывной или дискретной, детерминированной или стохастической и другими математическими формами.

Теория математического моделирования обеспечивает выявление закономерностей протекания различных явлений окружающего мира или работы систем и устройств путем их математического описания и моделирования без проведения натурных испытаний. При этом используются положения и законы математики, описывающие моделируемые явления, системы или устройства на некотором уровне их идеализации.

Математическая модель (ММ) представляет собой формализованное описание системы (или операции) на некотором абстрактном языке, например, в виде совокупности математических соотношений или схемы алгоритма, т. е. такое математическое описание, которое обеспечивает имитацию работы систем или устройств на уровне, достаточно близком к их реальному поведению, получаемому при натурных испытаниях систем или устройств. Любая ММ описывает реальный объект, явление или процесс с некоторой степенью приближения к действительности. Вид ММ зависит как от природы реального объекта, так и от задач исследования.

Математическое моделирование общественных, экономических, биологических и физических явлений, объектов, систем и различных устройств является одним из важнейших средств познания природы и проектирования самых разнообразных систем и устройств. Известны примеры эффективного использования моделирования в создании ядерных технологий, авиационных и аэрокосмических систем, в прогнозе атмосферных и океанических явлений, погоды и т.д.

Однако для таких серьезных сфер моделирования нередко нужны суперкомпьютеры и годы работы крупных коллективов ученых по подготовке данных для моделирования и его отладки. Тем не менее, и в этом случае математическое моделирование сложных систем и устройств не только экономит средства на проведение исследований и испытаний, но и может устранить экологические катастрофы – например, позволяет отказаться от испытаний ядерного и термоядерного оружия в пользу его математического моделирования или испытаний аэрокосмических систем перед их реальными полетами.

Между тем математическое моделирование на уровне решения более простых задач, например, из области механики, электротехники, электроники, радиотехники и многих других областей науки и техники в настоящее время стало доступным выполнять на современных ПК. А при использовании обобщенных моделей становится возможным моделирование и достаточно сложных систем, например, телекоммуникационных систем и сетей, радиолокационных или радионавигационных комплексов.

Целью математического моделирования является анализ реальных процессов (в природе или технике) математическими методами. В свою очередь, это требует формализации ММ процесса, подлежащего исследованию. Модель может представлять собой математическое выражение, содержащее переменные, поведение которых аналогично поведению реальной системы. Модель может включать элементы случайности, учитывающие вероятности возможных действий двух или большего числа «игроков», как, например, в теории игр; либо она может представлять реальные переменные параметры взаимосвязанных частей действующей системы.

Математическое моделирование для исследования характеристик систем можно разделить на аналитическое, имитационное и комбинированное. В свою очередь, ММ делятся на имитационные и аналитические.

Под математическим моделированием, в узком смысле слова, понимают описание в виде уравнений и неравенств реальных физических, химических, технологических, биологических, экономических и других процессов. Для того чтобы использовать математические методы для анализа и синтеза различных процессов, необходимо уметь описать эти процессы на языке математики, то есть описать в виде системы уравнений и неравенств .

Математические методы выступают как способ получения новых знаний об объекте. Это относится не только к системам. Оглядываясь назад, обращаясь к истории науки, исследователь видит, что всю динамику науки можно рассматривать как непрерывный процесс построения новых, более совершенных и мощных моделей. Укоренилось представление, что «всякое познание является моделированием» (Н.Амосов). Под воздействием общей теории систем произошло переосмысление, переоценка и классических представлений. Понятие математического моделирования стало толковаться настолько расширительно, что включило в себя всю формализацию и математизацию знания. «Математическая модель - это лишь специальный способ описания, позволяющий для анализа использовать формально-логический аппарат математики » (Моисеев Н.Н., 1973).

Но модели сложных и больших систем - это нечто иное принципиально, качественно. Аналитического, формально-логического аппарата здесь уже недостаточно. В рамках этой работы под математической моделью понимается любая математическая конструкция, являющаяся большой и/или сложной динамической системой и обладающая свойством структурно-функционального изоморфизма по отношению к исследуемой системе (системе-оригиналу).

Между моделированием и получением количественного или качественного результата математическими методами существует глубокое различие. Применение математики становится возможным тогда, когда становится ясно, что и с какой целью определять, оценивать, измерять, что и как обрабатывать математическими методами. Модель для этих задач не служит. Математическое моделирование − это не приложение математического инструмента к объекту, не решение конкретных задач математическими средствами. Это построение формальными методами и средствами абстрактного объекта изофункционального исследуемому объекту для последующего приложения математических методов количественного и качественного анализа. В то же время, использование в моделировании математики в качестве языка (метатеории) придает полученным выводам доказательную силу. Деятельность по построению моделей не принадлежит математике и выполняется (должна выполняться) не математиками, а специалистами в конкретной области знания.

Для построения модели системы нужны те содержательные эмпирические представления, те описательные науки, которые предшествуют появлению формализованных наук. Эти описания не входят в виде составных частей в формализованную науку, а лишь облегчают процесс формализации, обогащают эвристические возможности формализации. Модель не требует предварительного описания моделируемого объекта, потому что она сама является формой описания.

Отношение модели и реальности иное, чем отношение реальности и математической формулы. Формула − это иероглиф, знак действительности. Модель − это сама действительность. Можно возразить, что физик или математик отлично чувствует динамику, реальные отношения, которые скрываются за формулой, не воспринимает ее как иероглиф, а, кроме того, современная математика − это далеко не просто и не только формула. И все же, формулами ученый мыслить не может. Иное дело модель. Она обладает динамикой, она живет (не только в переносном, порой и в прямом смысле слова). Исследователь может мыслить моделями, он получает возможность образного мышления. В мире моделей смыкается художественное и логическое восприятие действительности.

Математическое моделирование не исключает использование классической математики, более того, в составе модели математика получает ту силу и всеобщность проникновения, которой была лишена в классическую эпоху.

Если мы рассматриваем некоторый объект как целое, заданное своими внешними свойствами, мы можем эффективно использовать аналитические способы описания для процессов, происходящих вне этого целого. Но стоит поставить задачу внутреннего описания большой и/или сложной системы, описания взаимодействий между ее частями, элементами и подсистемами методами классической математики, как мы немедленно сталкиваемся с непреодолимыми трудностями.

С другой стороны, попытка описать процедурными методами некоторую систему, в общем, не проникая в ее внутреннее устройство, в ее структуру и функции элементов, как правило, не приведет к значимому результату. Каждому методу свое место.

В математике аналитических структур мы должны сначала понять, а потом описать. В моделировании, в математике алгоритмических процессов, сам процесс описания того, что еще не понято, нередко становится средством понимания.

Как методология научных исследований математическое моделирование сочетает в себе опыт различных отраслей науки о природе и обществе, прикладной математики, информатики и системного программирования для решения фундаментальных проблем. Математическое моделирование объектов сложной природы – единый сквозной цикл разработок от фундаментального исследования проблемы до конкретных численных расчетов показателей эффективности объекта. Результатом разработок бывает система математических моделей, которые описывают качественно разнородные закономерности функционирования объекта и его эволюцию в целом как сложной системы в различных условиях. Вычислительные эксперименты с математическими моделями дают исходные данные для оценки показателей эффективности объекта. Поэтому математическое моделирование как методология организации научной экспертизы крупных проблем незаменимо при проработке народнохозяйственных решений. (В первую очередь это относится к моделированию экономических систем).По своей сути математическое моделирование есть метод решения новых сложных проблем, поэтому исследования по математическому моделированию должны быть опережающими. Следует заранее разрабатывать новые методы, готовить кадры, умеющие со знанием дела применять эти методы для решения новых практических задач.Математическая модель может возникнуть тремя путями: 1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей. Процесс моделирования начинается с моделирования упрощенного процесса, который с одной стороны отражает основные качественные явления, с другой стороны допускает достаточно простое математическое описание. По мере углубления исследования строятся новые модели, более детально описывающие явление. Факторы, которые считаются второстепенными на данном этапе, отбрасываются. Однако, на следующих этапах исследования, по мере усложнения модели, они могут быть включены в рассмотрение. В зависимости от цели исследования один и тот же фактор может считаться основным или второстепенным.Математическая модель и реальный процесс не тождественны между собой. Как правило, математическая модель строится с некоторым упрощением и при некоторой идеализации. Она лишь приближенно отражает реальный объект исследования, и результаты исследования реального объекта математическими методами носят приближенный характер. Точность исследования зависит от степени адекватности модели и объекта и от точности применяемых методов вычислительной математики. Схема построения математических моделей следующая: 1. Выделение параметра или функции, подлежащей исследованию.2. Выбор закона, которому подчиняется эта величина.3. Выбор области, в которой требуется изучить данное явление.

Теоретическая дисциплина становится точной наукой, когда она оперирует количественными характеристиками. За качественным описанием модели следует вторая фаза абстрагирования − количественное описание модели. Еще Галилео Галилей сказал, что книга природы написана на языке математики. Иммануил Кант провозгласил, что «во всякой науке столько истины, сколько в ней математики». А Давиду Гильберту принадлежат слова: «Математика основа всего точного естествознания».

Математическое моделирование − это теоретико-экспериментальный метод познавательно-созидательной деятельности, это метод исследования и объяснения явлений, процессов и систем (объектов-оригиналов) на основе создания новых объектов − математических моделей.

Под математической моделью принято понимать совокупность соотношений (уравнений, неравенств, логических условий, операторов и т.п.), определяющих характеристики состояний объекта моделирования, а через них и выходные значения – реакции , в зависимости от параметров объекта-оригинала , входных воздействий , начальных и граничных условий, а также времени.

Математическая модель, как правило, учитывает лишь те свойства (атрибуты) объекта-оригинала , которые отражают, определяют и представляют интерес с точки зрения целей и задач конкретного исследования. Следовательно, в зависимости от целей моделирования, при рассмотрении одного и того же объекта-оригинала с различных точек зрения и в различных аспектах, последний может иметь различные математические описания и, как следствие, быть представлен различными математическими моделями.

Принимая во внимание, изложенное выше, дадим наиболее общее, но в то же время строгое конструктивное определение математической модели, сформулированное П.Дж. Коэном.

Определение 4.1. Математическая модель − это формальная система, представляющая собой конечное собрание символов и совершенно строгих правил оперирования этими символами в совокупности с интерпретацией свойств определенного объекта некоторыми отношениями, символами или константами.

Как следует из приведенного определения, конечное собрание символов (алфавит) и совершенно строгих правил оперирования этими символами («грамматика» и «синтаксис» математических выражений) приводят к формированию абстрактных математических объектов (АМО). Только интерпретация делает этот абстрактный объект математической моделью.

Математическая модель представляет собой количест-венную формализацию абстрактных представлений об изучаемом явлении или объекте.

Математические модели могут быть представлены различны­ми математическими средствами:

· действительными или комплексными величинами;

· векторами, матрицами;

· геометрическими образами;

· не­равенствами;

· функциями и функционалами;

· множествами, различными уравнениями;

· функциями распределения вероятностей, статистиками и т.д.

«В физической науке писал Томпсон, при изучении любого объекта первый и наиболее существенный шаг состоит в том, чтобы найти принципы численной оценки и практические методы из­мерения некоторого количества, присущего этому объекту».

Переход от первой ко второй фазе абстрагирования, т.е. от физической модели к математической часто освобождает модель от специфических черт, присущих данному изучаемому явлению или объ­екту. Очень многие математические модели, лишившись физической или технической оболочки, приобретают универсальность, т.е. спо­собность количественного описания различных по своей физической природе процессов или по техническому назначению объектов. В этом проявляется одно из важнейших свойств математической форма­лизации предмета исследования, благодаря которому при постановке и решении прикладных задач в большинстве случаев не требуется создавать новый математический аппарат, а можно воспользоваться существующим, с необходимыми для конкретной ситуации усовершенс­твованием и интерпретацией. Таким образом, одна математическая модель может быть использована для решения большого числа част­ных, конкретных задач и в этом смысле она выражает одно из глав­ных практических назначений теории.

Конечно, построение физической модели часто неразрывно свя­зано с построением математической модели и оба этих процесса представляют две стороны единого процесса абстрагирования.

Нас окружают сложные технические объекты (технические системы), созданные человеком . В процессе проектирования новой или модернизации существующей технической системы решаются задачи расчета параметров и исследования процессов в этой системе. При проведении многовариантных расчетов реальную систему заменяют моделью. В широком смысле модель определяют как отражение наиболее существенных свойств объекта.

Определение 4 .2 . Математическая модель технического объекта - совокупность математических объектов и отношений между ними, которая адекватно отражает свойства исследуемого объекта, интересующие исследователя (инженера).

Модель может быть представлена различными способами.

Формы представления модели

· инвариантная − запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели;

· аналитическая − запись модели в виде результата аналитического решения исходных уравнений модели;

· алгоритмическая − запись соотношений модели и выбранного численного метода решения в форме алгоритм;

· схемная (графическая) − представление модели на некотором графическом языке (например, язык графов, эквивалентные схемы, диаграммы и т.п.);

· физическая;

· аналоговая;

Математическое моделирование является наиболее универсальным описанием процессов.

В понятие математического моделирования иногда включают и процесс решения задачи на ЭВМ (что в принципе не совсем верно, так как решение задачи на ЭВМ предусматривает кроме всего прочего создание алгоритмической и программной модели, реализующей вычисление в соответствии с математической моделью).

Определение 4.3. ММ− это образ исследуемого объекта, создаваемый в уме субъекта-исследователя с помощью определенных формальных (математических) систем с целью изучения (оценки) определенных свойств данного объекта.

Пусть некоторый объект Q обладает некоторым интересующим нас свойством C 0 .

Для получения математической модели, описывающей данное свойство необходимо:

1. Определить показатель данного свойства (т.е. определить меру свойства в некоторой системе измерения ).

2. Установить перечень свойств С 1 , ..., С m, с которыми свойство С 0 связано некоторыми отношениями (это могут быть внутренние свойства объекта и свойства внешней среды, влияющие на объект).

3. Описать в избранной форматной системе свойства внешней среды, как внешние факторы х 1 , ..., х n , влияющие на искомый показатель Y , внутренние свойства объекта, как параметры z 1 , ..., z r , а неучтенные свойства отнести к группе неучитываемых факторов .

4. Выяснить, если это возможно, закономерные отношения между Y и всеми учитываемыми факторами и параметрами, и составить математическое описание (модель ).

Реальный объект характеризуется следующим функциональным отношением между показателями его свойств:

Однако в модели отображаются только те факторы и параметры оригинального объекта, которые имеют существенное значение для решения исследуемой проблемы. Кроме того, измерения существенных факторов и параметров практически всегда содержат ошибки, вызываемые неточностью измерительных приборов и незнанием некоторых факторов. В силу этого ММ является только приближенным описанием свойств изучаемого объекта.

Математическую модель можно определить еще и как абстракцию изучаемой реальной сущности .

Модели обычно отличаются от оригиналов по природе своих внутренних параметров. Подобие заключается в адекватности реакции Y модели и оригинала на изменение внешних факторов . Поэтому в общем случае математическая модель представляет собой функцию

где - внутренние параметры модели, адекватные параметрам оригинала.

В зависимости от применяемых методов математического описания изучаемых объектов (явлений, процессов) ММ бывают аналитические, логические, графические, автоматные и т.д.

Главным вопросом математического моделирования является вопрос о том, как точно составленная ММ отражает отношения между учитываемыми факторами, параметрами и показателем Y оцениваемого свойства реального объекта, т.е. на сколько точно уравнение (4.2) соответствует уравнению (4.1). Иногда уравнение (4.2) может быть получено сразу в явном виде, например, в виде системы дифференциальных уравнений, или в виде иных явных математических соотношений.

В более сложных случаях вид уравнения (4.2) неизвестен и задача исследователя состоит, прежде всего, в том, чтобы найти это уравнение. При этом к числу варьируемых параметров , относят все учитываемые внешние факторы и параметры исследуемого объекта, а к числу искомых параметров относят внутренние параметры модели , связывающие факторы , с показателем Y " наиболее правдоподобным отношением. Решением этой проблемы занимается теория эксперимента. Суть этой теории состоит в том, чтобы, основываясь на выборочных измерениях значений параметров , и показателя Y ", найти параметры , при которых функция (4.2) наиболее точно отражает реальную закономерность (4.1).

ЛЕКЦИЯ 4

Определение и назначение математического моделирования

Под моделью (от латинского modulus - мера, образец, норма) будем понимать такой материально или мысленно представляемый объект, который в процессе познания (изучения) замещает объект-оригинал, сохраняя некоторые важные для данного исследования типичные его черты. Процесс построения и использования модели называется моделированием.

Суть математического моделирования (ММ ) заключается в замене изучаемого объекта (процесса) адекватной математической моделью и последующем исследовании свойств этой модели с помощью либо аналитических методов, либо вычислительных экспериментов.

Иногда полезнее вместо того, чтобы давать строгие определения, описывать то или инее понятие на конкретном примере. Поэтому проиллюстри-руем приведенные выше определения ММ на примере задачи расчета удельного импульса. В начале 60-х годов перед учеными ставилась задача разработки ракетного топлива с наибольшим удельным импульсом. Принцип движения ракеты состоит в следующем: жидкое топливо и окислитель из баков ракеты подаются в двигатель, где происходит их сгорание, а продукты сгорания вылетают в атмосферу. Из закона сохранения импульса следует, что в этом ракета будет двигаться со скоростью.

Удельный импульс топлива – это полученный импульс, деленный на массу топлива. Проведение экспериментов было очень дорогостоящим и приводило к систематической порче оборудования. Оказалось, что легче и дешевле рассчитать термодинамические функции идеальных газов, вычислить с их помощью состав вылетающих газов и температуру плазмы, а затем и удельный импульс. То есть провести ММ процесса горения топлива.

Понятие математического моделирования (ММ) сегодня одно из самых распространенных в научной литературе . Подавляющее большинство современных дипломных и диссертационных работ связано с разработкой и использованием соответствующих математических моделей. Компьютерное ММ сегодня является составной частью многих областей человеческой деятельности (наука, техника, экономика, социология и т. д.). Это одна из причин сегодняшнего дефицита специалистов в области информационных технологий .

Бурный рост математического моделирования обусловлен стремительным совершенствованием вычислительной техники. Если еще 20 лет назад проведением численных расчетов занималось лишь небольшое число программистов, то теперь объем памяти и быстродействие современных компьютеров, позволяющих решать задачи математического моделирования доступных всем специалистам, включая студентов ВУЗов.

В любой дисциплине вначале дается качественное описание явлений. А затем уже – количественное, сформулированное в виде законов, устанавливающих связи между различными величинами (напряженность поля, интенсивность рассеяния, заряд электрона, …) в форме математических уравнений. Поэтому можно сказать, что в каждой дисциплине столько науки, сколько в ней есть математики, и этот факт позволяет успешно решать многие задачи методами математического моделирования.

Данный курс предназначен для студентов, специализирующихся в области прикладной математики, которые выполняют дипломные работы под руководством ведущих ученых, работающих в различных областях. Поэтому данный курс необходим не только как учебный материал, но и как подготовка к дипломной работе. Для изучения данного курса нам будут необходимы следующие разделы математики:

1. Уравнения математической физики (кантовая механика, газо - и гидродинамика)

2. Линейная алгебра (теория упругости)

3. Скалярные и векторные поля (теория поля)

4. Теория вероятностей (квантовая механика, статистическая физика, физическая кинетика)

5. Специальные функции.

6. Тензорный анализ (теория упругости)

7. Математический анализ

ММ в естествознании, технике, и экономике

Рассмотрим вначале различные разделы естествознания, техники, экономики, в которых используются математические модели.

Естествознание

Физика, устанавливающая основные законы естествознания, давно разделилась на теоретическую и экспериментальную. Выводом уравнений, описывающих физические явления, занимается теоретическая физика. Таким образом, теоретическая физика также может считаться одним из направлений математического моделирования. (Вспомним, что название первой книги по физике – «Математические начала натуральной философии» И. Ньютона можно перевести на современный язык как «Математические модели естествознания».) На основании полученных законов проводятся инженерные расчеты, которые проводятся в различных институтах, фирмах, КБ. Эти организации разрабатывают технологии изготовления современной продукции, которые являются наукоемкими.Таким образом, понятие наукоемкие технологии включает в себя расчеты с помощью соответствующих математических моделей.

Один из наиболее обширных разделов физики – классическая механика (иногда этот раздел называется теоретической или аналитической механикой). Данный раздел теоретической физики изучает движение и взаимодействие тел. Расчеты с помощью формул теоретической механики необходимы при изучении вращения тел (расчет моментов инерции, гиростатов – устройств сохраняющих в неподвижности оси вращения), анализе движения тела в безвоздушном пространстве, и др. Один из разделов теоретической механики называется теорией устойчивости и лежит в основе многих математических моделей, описывающих движение самолетов, кораблей, ракет. Разделы практической механики – курсы «Теория машин и механизмов», «Детали машин», изучается студентами почти всех технических вузов (включая МГИУ).

Теория упругости – часть раздела механики сплошных сред , предполагающая, что материал упругого тела однороден и непрерывно распределен по всему объему тела, так что самый малый элемент, вырезанный из тела, обладает теми же физическими свойствами, что и все тело. Приложение теории упругости – курс «сопротивление материалов», изучается студентами всех технических вузов (включая МГИУ). Данный раздел необходим для всех расчетов прочности. Здесь и расчет прочности корпусов кораблей, самолетов, ракет, расчет прочности стальных и железобетонных конструкций зданий и многое другое.

Газо- и гидродинамика , как и теория упругости – часть раздела механики сплошных сред , рассматривает законы движения жидкости и газа. Уравнения газо - и гидродинамики необходимы при анализе движения тел в жидкой и газообразной среде (спутники, подводные лодки, ракеты, снаряды, автомобили), при расчетах истечения газа из сопел двигателей ракет, самолетов. Практическое приложение гидродинамики – гидравлика (тормоз, руль,…)

Предыдущие разделы механики рассматривали движении тел в макромире, и физические законы макромира неприменимы в микромире, в котором движутся частицы вещества - протоны, нейтроны, электроны. Здесь действуют совершенно другие принципы, и для описания микромира необходима квантовая механика . Основное уравнение, описывающее поведение микрочастиц - уравнение Шредингера: . Здесь - оператор Гамильтона (гамильтониан). Для одномерного уравнения движения частицы https://pandia.ru/text/78/009/images/image005_136.gif" width="35" height="21 src=">-потенциальная энергия. Решение этого уравнения – набор собственных значений энергии и собственных функций..gif" width="55" height="24 src=">– плотность вероятности. Квантовомеханические расчеты нужны для разработки новых материалов (микросхемы), создания лазеров, разработки методов спектрального анализа, и др.

Большое количество задач решает кинетика , описывающая движение и взаимодействие частиц. Здесь и диффузия , теплообмен, теория плазмы – четвертого состояния вещества.

Статистическая физика рассматривает ансамбли частиц, позволяет сказать о параметрах ансамбля, исходя из свойств отдельных частиц. Если ансамбль состоит из молекул газа, то выведенные методами статистической физики свойства ансамбля представляют собой хорошо известные со средней школы уравнения газового состояния: https://pandia.ru/text/78/009/images/image009_85.gif" width="16" height="17 src=">.gif" width="16" height="17">-молекулярный вес газа. К – постоянная Ридберга. Статистическими методами рассчитываются также свойства растворов, кристаллов, электронов в металлах. ММ статистической физики – теоретическая основа термодинамики, которая лежит в основе расчета двигателей, тепловых сетей и станций.

Теория поля описывает методами ММ одну из основных форм материи – поле. При этом основной интерес представляют электромагнитные поля. Уравнения электромагнитного поля (электродинамики) были выведены Максвеллом: , , , . Здесь и https://pandia.ru/text/78/009/images/image018_44.gif" width="16" height="17"> - плотность заряда, -плотность тока. Уравнения электродинамики лежат в основе расчетов распространения электромагнитных волн, необходимых для описания распространения радиоволн (радио, телевидение, сотовая связь), объяснения работы радиолокационных станций.

Химию можно представить в двух аспектах, выделяя описательную химию – открытие химических факторов и их описание – и теоретическую химию – разработку теорий, позволяющих обобщить установленные факторы и представить их в виде определенной системы (Л. Полинг). Теоретическая химия называется также физической химией и является, в сущности, разделом физики, изучающей вещества и их взаимодействия. Поэтому все, что было сказано относительно физики, в полной мере относится и к химии. Разделами физической химии будут термохимия, изучающая тепловые эффекты реакций, химическая кинетика (скорости реакций), квантовая химия (строение молекул). При этом задачи химии бывают чрезвычайно сложными. Так, например, для решения задач квантовой химии – науки о строении атомов и молекул, используются программы, сравнимые по объему с программами ПВО страны. Например, для того, чтобы описать молекулу UCl4, состоящую из 5 ядер атомов и +17*4) электронов, нужно записать уравнение движения – уравнения в частных производных.

Биология

В биологию математика пришла по настоящему только во второй половине 20 века. Первые попытки математически описать биологические процессы относятся к моделям популяционной динамики. Популяцией называется сообщество особей одного вида, занимающих некоторую область пространства на Земле. Эта область математической биологии, изучающая изменение численности популяции в различных условиях (наличие конкурирующих видов, хищников, болезней и т. п.) и в дальнейшем служила математическим полигоном, на котором "отрабатывались" математические модели в разных областях биологии. В том числе модели эволюции, микробиологии, иммунологии и других областей, связанных с клеточными популяциями.
Самая первая известная модель, сформулированная в биологической постановке, ‑ знаменитый ряд Фибоначчи (каждое последующее число является суммой двух предыдущих), который приводит в своем труде Леонардо из Пизы в 13 веке. Это ряд чисел, описывающий количество пар кроликов, которые рождаются каждый месяц, если кролики начинают размножаться со второго месяца и каждый месяц дают потомство в виде пары кроликов. Ряд представляет последовательность чисел: 1, 1, 2, 3, 5, 8, 13, 21, …

1,

2 ,

3,

5,

8, 13, …

Другим примером является изучение процессов ионного трансмембранного переноса на искусственной бислойной мембране. Здесь для того, чтобы изучить законы образования поры, через которую ион проходит сквозь мембрану внутрь клетки, необходимо создать модельную систему, которую можно изучать экспериментально, и для которой можно использовать хорошо разработанное наукой физическое описание.

Классическим примером ММ также является популяция дрозофилы. Еще более удобной моделью являются вирусы , которые можно размножать в пробирке. Методами моделирования в биологии служат методы динамической теории систем, а средствами - дифференциальные и разностные уравнения, методы качественной теории дифференциальных уравнений, имитационное моделирование.
Цели моделирования в биологии:
3. Выяснение механизмов взаимодействия элементов системы
4. Идентификация и верификация параметров модели по экспериментальным данным.
5. Оценка устойчивости системы (модели).

6. Прогноз поведения системы при различных внешних воздействиях, различных способах управления и проч.
7. Оптимальное управление системой в соответствии с выбранным критерием оптимальности .

Техника

Совершенствованием техники занимается большое количество специалистов, которые в своей работе опираются на результаты научных исследований. Поэтому ММ в технике те же самые, что и ММ естествознания, о которых говорилось выше.

Экономика и социальные процессы

Принято считать, что математическое моделирование как метод анализа макроэкономических процессов было впервые применено лейб-медиком короля Людовика XV доктором Франсуа Кенэ , который в 1758 г. опубликовал работу «Экономическая таблица». В этой работе была сделана первая попытка количественно описать национальную экономику. А в 1838 г. в книге О. Курно «Исследование математических принципов теории богатства» количественные методы были впервые использованы для анализа конкуренции на рынке товара при различных рыночных ситуациях.

Широко известна также теория Мальтуса о народонаселении, в которой он предложил идею: рост населения далеко не всегда желателен, и рост этот идет быстрее, чем растут возможности обеспечения населения продовольствием. Математическая модель такого процесса достаточно проста: Пусть - прирост численности населения за время https://pandia.ru/text/78/009/images/image027_26.gif" width="15" height="24"> численность была равна . и - коэффициенты, учитывающие рождаемость и смертность (чел/год). Тогда

https://pandia.ru/text/78/009/images/image032_23.gif" width="151" height="41 src=">Инструментальные и математические методы " href="/text/category/instrumentalmznie_i_matematicheskie_metodi/" rel="bookmark">математические методы анализа (например, в последние десятилетия в гуманитарных науках появились математические теории развития культуры, построены и исследованы математические модели мобилизации, циклического развития социокультурных процессов, модель взаимодействия народа и правительства, модель гонки вооружений и др.).

В самых общих чертах процесс ММ социально-экономических процессов условно можно подразделить на четыре этапа:

    формулировка системы гипотез и разработка концептуальной модели; разработка математической модели; анализ результатов модельных расчетов, который включает сравнение их с практикой; формулировка новых гипотез и уточнение модели в случае несоответствия результатов расчетов и практических данных.

Отметим, что, как правило, процесс математического моделирования носит циклический характер, поскольку даже при исследовании сравнительно простых процессов редко удается с первого шага построить адекватную математическую модель и подобрать точные ее параметры.

В настоящее время экономика рассматривается как сложная развивающаяся система, для количественного описания которой применяются динамические математические модели различной степени сложности. Одно из направлений исследования макроэкономической динамики связано с построением и анализом относительно простых нелинейных имитационных моделей, отражающих взаимодействие различных подсистем – рынка труда, рынка товаров, финансовой системы , природной среды и др.

Успешно развивается теория катастроф. Эта теория рассматривает вопрос об условиях, при которых изменение параметров нелинейной системы вызывает перемещение точки в фазовом пространстве, характеризующей состояние системы, из области притяжения к начальному положению равновесия в область притяжения к другому положению равновесия. Последнее очень важно не только для анализа технических систем, но и для понимания устойчивости социально-экономических процессов. В этой связи представляют интерес выводы о значении исследования нелинейных моделей для управления. В книге «Теория катастроф», опубликованной в 1990 г., он, в частности, пишет: «…нынешняя перестройка во многом объясняется тем, что начали действовать хотя бы некоторые механизмы обратной связи (боязнь личного уничтожения)».

(параметры модели)

При построении моделей реальных объектов и явлений часто приходится сталкиваться с недостатком информации. Для исследуемого объекта распределение свойств, параметры воздействия и начальное состояние известны с той или иной степенью неопределенности. При построении модели возможны следующие варианты описания неопределенных параметров:

Классификация математических моделей

(методы реализации)

Методы реализации ММ можно классифицировать в соответствии с таблицей, приведенной ниже.

Методы реализации ММ

Очень часто аналитическое решение для модели представляется в виде функций. Для получения значений этих функций при конкретных значениях входных параметров используют их разложение в ряды (например, Тейлора), и значение функции при каждом значении аргумента определяется приближенно. Модели, использующие такой прием, называются приближенными .

При численном подходе совокупность математических соотношений модели заменяется конечномерным аналогом. Это чаще всего достигается дискретизацией исходных соотношений, т. е. переходом от функций непрерывного аргумента к функциям дискретного аргумента (сеточные методы).

Найденное после расчетов на компьютере решение принимается за приближен-ное решение исходной задачи.

Большинство существующих систем является очень сложными, и для них невозможно создать реальную модель, описанную аналитически. Такие системы следует изучать с помощью имитационного моделирования . Один из основных приемов имитационного моделирования связан с применением датчика случайных чисел.

Так как огромное количество задач решается методами ММ, то способы реализации ММ изучаются не в одном учебном курсе. Здесь и уравнения в частных производных, численные методы решения этих уравнений, вычислительная математика, компьютерное моделирование и т. п.

ПОЛИНГ, ЛАЙНУС КАРЛ (Pauling, Linus Carl) (), американский химик и физик, удостоенный в 1954 Нобелевской премии по химии за исследования природы химической связи и определение структуры белков. Родился 28 февраля 1901 в Портленде (шт. Орегон). В разработал квантовомеханический метод изучения строения молекул (наряду с американским физиком Дж. Слейером) - метод валентных связей, а также теорию резонанса, позволяющую объяснить строение углеродосодержащих соединений, прежде всего соединений ароматического ряда. В период культа личности СССР ученые, занимавшиеся квантовой химией подвергались гонениям и обвинялись в «полингизме».

МАЛЬТУС, ТОМАС РОБЕРТ (Malthus, Thomas Robert) (), английский экономист. Родился в Рукери близ Доркинга в Суррее 15 или 17 февраля 1766. В 1798 анонимно опубликовал труд Опыт о законе народонаселения. В 1819 Мальтус был избран членом Королевского общества.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация