Ядерная реакция лития и водорода. Ядерная реакция

Главная / Квартира

И способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Что такое ядерные реакции

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории ядерных реакций

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома , продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо — температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Ядерные реакции, видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

Вспомним вкратце, что мы уже знаем об атоме:

  • ядро атома имеет чрезвычайно большую плотность при очень малом размере (относительно самого атома);
  • в ядре находятся протоны и нейтроны;
  • электроны находятся вне ядра на энергетических уровнях;
  • протоны имеют положительный заряд, электроны - отрицательный, а нейтроны - не имеют заряда. В целом атом нейтрален, т.к. имеет равное число протонов и электронов;
  • количество нейтронов, находящихся в каждом атоме одного и того же элемента, может быть разным. Атомы, имеющие одинаковый заряд ядра, но разное кол-во нейтронов, называются изотопами .

В периодической таблице химический элемент "кислород" обозначается следующим образом:

  • 16 - массовое число (сумма протонов и нейтронов);
  • 8 - порядковый (атомный) номер элемента (количество протонов в ядре атома);
  • О - обозначение элемента.

1. Радиоактивность

Самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, при котором происходит испускание элементарных частиц, называется радиоактивностью.

Если нам известна одна из частиц, получившаяся при распаде, то можно вычислить и другую частицу, поскольку во время ядреной реакции соблюдается, так называемый, баланс масс ядерной реакции.

Суть ядерной реакции схематически можно выразить так:

Реагенты, вступающие в реакцию → Продукты, получившиеся в результате реакции

Ядерная реакция считается сбалансированной , если сумма атомных номеров элементов в левой части выражения будет равна сумме атомных номеров элементов, полученных после реакции. Это же условие должно соблюдаться и для сумм массовых чисел. Предположим, что происходит ядерная реакция: изотоп хлора (хлор-35) бомбардируется нейтроном с образованием изотопа водорода (водород-1):

35 17 Cl + 1 0 n → 35 16 Х + 1 1 H

Какой Х-элемент будет находиться в правой части уравнения реакции?

Исходя из баланса масс ядерной реакции, атомный номер неизвестного элемента будет равен 16. В Периодической таблице под этим номером находится элемент сера (S). Т.о., можно сказать, что в результате нашей ядерной реакции при бомбардировке изотопа хлора (хлор-35) нейтроном получается изотоп водорода (водород-1) и изотоп серы (сера-35). Этот процесс называют еще ядерным превращением .

35 17 Cl + 1 0 n → 35 16 S + 1 1 H

При помощи подобных ядерных превращений ученые научились получать искусственные изотопы, которые не встречаются в природе.

2. Почему изотопы распадаются?

В ядре атома находятся протоны (положительно заряженные частицы), которые сконцентрированы в очень малом пространстве. Ранее мы говорили, что в ядре атома действуют некие удерживающие силы (так называемый, "ядерный клей"), которые не дают одноименно заряженным нейтронам разорвать ядро атома. Но иногда энергия отталкивания частиц превосходит энергию склеивания, и ядро раскалывается на части - происходит радиоактивный распад.

Ученые установили, что все химические элементы, в ядре которых более 84 протонов (под этим порядковым номером в таблице находится полоний - Ро), являются нестабильными и время от времени подвергаются радиоактивному распаду. Однако, существуют изотопы, в ядре которых меньше 84 протонов, но они также являются радиоактивными. Дело в том, что о стабильности изотопа можно судить по соотношению количества протонов и нейтронов атома. Изотоп будет нестабилен, если разность между количеством протонов и нейтронов велика (много протонов и мало нейтронов, либо мало протонов и много нейтронов). Изотоп элемента будет устойчивым, если количество нейтронов и протонов в его атоме примерно равно.

Поэтому, неустойчивые изотопы, подвергаясь радиоактивному распаду, превращаются в другие элементы. Процесс превращения будет идти до тех пор, пока не образуется устойчивый изотоп.

3. Период полураспада

Когда же происходит радиоактивный распад атома неустойчивого элемента? Это может произойти в любой момент: через пару мгновений, или через 100 лет. Но, если выборка атомов по определенному элементу достаточно велика, то можно вывести определенную закономерность.


Ниже в таблице приведены данные периода полураспада для некоторых радиоактивных изотопов

Период полураспада необходимо знать для того, чтобы определить время, когда радиоактивный элемент станет безопасен - это произойдет, когда его радиоактивность упадет настолько, что ее нельзя будет обнаружить, т.е., через 10 периодов полураспада.

4. Цепная ядерная реакция

В 30-х годах прошлого столетия ученые начали пытаться управлять ядерными реакциями. В результате бомбардирования (обычно нейтроном) ядро атома тяжелого элемента делится на два более легких ядра. Например:

235 92 U + 1 0 n → 142 56 Ba + 91 36 Kr + 3 1 0 n

Такой процесс называется расщеплением (делением) ядра . В результате высвобождается колоссальное количество энергии. Откуда она берется? Если очень точно измерить массы частиц до реакции и после нее, то окажется, что в результате ядерной реакции часть массы бесследно исчезла. Такую потерю массы принято называть дефектом массы. Исчезающее вещество превращается в энергию.

Великий Альберт Эйнштейн вывел свою знаменитую формулу: E = mc 2 , где

Е - количество энергии;
m - дефект массы (исчезнувшая масса вещества);
с - скорость света = 300 000 км/с

Поскольку скорость света является очень большой величиной самой по себе, а в формуле она возводится в квадрат, то даже ничтожно малое "исчезновение массы" приводит к высвобождению достаточно большого количества энергии.

Из приведенного выше уравнения расщепления урана-235 видно, что в процессе деления ядра расходуется один электрон, а получается сразу три. В свою очередь, эти три, вновь полученных электрона, встретив на "своем пути" три ядра урана-235, произведут очередное расщепление, в результате чего получится уже 9 нейтронов и т.д… Такой непрерывно нарастающий каскад расщеплений называется цепной реакцией .

Цепная реакция возможна только с теми изотопами, при расщеплении которых создается избыток нейтронов. Так цепная реакция с изотопом урана (уран-238) невозможна, т.к. высвободится только один нейтрон:

238 92 U + 1 0 n → 142 56 Ba + 91 36 Kr + 1 0 n

Для ядерных реакций используют изотопы урана (уран-235) и плутона (плутон-239). Чтобы ядерная реакция смогла протекать самостоятельно, требуется определенное количество расщепляемого вещества, называемое критической массой . В противном случае число избыточных нейтронов будет недостаточным для осуществления ядерной реакции. Масса расщепляемого вещества меньше критической называется субкритической .

На уроках химии вы познакомились с химическими реакциями, которые ведут к превращениям молекул. Однако атомы при химических реакциях не изменяются. Рассмотрим теперь так называемые ядерные реакции, которые ведут к превращениям атомов. Введём условные обозначения:

Здесь Х – символ химического элемента (как в таблице Менделеева), Z – зарядовое число ядра изотопа, А – массовое число ядра изотопа.

Зарядовое число ядра – это число протонов в ядре, равное номеру элемента в таблице Менделеева. Массовое число ядра – это число входящих в ядро нуклонов (протонов и нейтронов). Зарядовое и массовое числа – физические величины, не совпадающие с зарядом и массой ядра.

Например, символ означает, что ядро этого атома углерода имеет зарядовое число 6 и массовое число 12. Есть и другие изотопы углерода, например . Ядро такого изотопа содержит на один нейтрон больше при том же числе протонов (сравните рисунки).

Первая лабораторная ядерная реакция Резерфорда протекала так:

Ядро атома азота взаимодействовало с a -частицей (ядром атома гелия). При этом получилось ядро фтора – неустойчивый промежуточный продукт реакции. А затем из него образовались ядра кислорода и водорода, то есть произошло превращение одних химических элементов в другие.

По результатам этой ядерной реакции составим следующую таблицу.

Из сравнения клеток таблицы видно, что суммы массовых чисел, а также суммы зарядовых чисел до и после ядерной реакции попарно равны. Эксперименты показывают, что для всех ядерных реакций выполняется закон сохранения зарядового и массового чисел: суммы зарядовых и массовых чисел частиц до и после ядерной реакции попарно равны.

Большинство ядерных реакций заканчивается после образования новых ядер. Однако существуют реакции, продукты которых вызывают новые ядерные реакции, называемые цепными ядерными реакциями. Примером служит реакция деления ядер урана-235 (см. рисунок). Когда в ядро урана попадает нейтрон, оно распадается на два других ядра и 2-3 новых нейтрона. Эти нейтроны попадают в другие ядра урана, и цепная реакция продолжается. Такая ситуация является идеальной. На самом деле многие образовавшиеся нейтроны вылетают за пределы вещества, поэтому не могут быть поглощены ураном.

Однако при высокой степени чистоты урана, то есть при большой его массовой доле, а также при его компактном размещении вероятность захвата нейтрона соседним ядром возрастает. Минимальная масса радиоактивного вещества, при которой возникает цепная реакция, называется критической массой . Для чистого урана-235 – это несколько десятков килограммов. Неуправляемая цепная реакция протекает очень быстро, представляя собой взрыв. Для её применения в мирных целях необходимо сделать реакцию управляемой, что достигается в специальном устройстве – ядерном реакторе (см. § 15-и).

Ядерные реакции очень часты в природе. Например, более половины элементов таблицы Менделеева имеют радиоактивные изотопы.

При низких (< 1 МэВ), средних (1-100 МэВ) и высоких (> 100 МэВ) энергиях. Разграничивают р-ции на легких ядрах ( ядра мишени А < 50), ядрах ср. массы (50 < А < 100) и тяжелых ядрах (А > 100).
Я дерная может произойти, если две участвующие в ней частицы сближаются на расстояние, меньшее диаметра ядра (ок. 10 -13 см), т. е. на расстояние, при к-ром действуют силы внутриядерного взаимод. между составляющими ядра нуклонами. Если обе участвующие в ядерной частицы - и бомбардирующая, и ядро мишени - заряжены положительно, то сближению частиц препятствует сила отталкивания двух положит. зарядов, и бомбардирующая частица должна преодолеть т.наз. кулоновский потенциальный барьер. Высота этого барьера зависит от заряда бомбардирующей частицы и заряда ядра мишени. Для ядер, отвечающих со ср. значениями , и бомбардирующих частиц с зарядом +1, высота барьера составляет ок. 10 МэВ. В случае, если в ядерной участвуют частицы, не обладающие зарядом (), кулоновский потенциальный барьер отсутствует, и ядерные могут протекать с участием частиц, имеющих тепловую энергию (т. е. энергию, отвечающую тепловым колебаниям ).
Обсуждается возможность протекания ядерных не в результате бомбардировки ядер мишени налетающими частицами, а за счет сверхсильного сближения ядер (т. е. сближения на расстояния, сопоставимые с диаметром ядра), находящихся в твердой или на пов-сти (напр., с участием ядер , растворенного в ); пока (1995) надежных данных об осуществлении таких ядерных ("холодного термоядерного синтеза") нет.
Я дерные подчиняются тем же общим законам природы, что и обычные хим. р-ции ( и энергии, сохранения заряда, импульса). Кроме того, при протекании ядерных действуют и нек-рые специфич. законы, не проявляющиеся в хим. р-циях, напр., закон сохранения барионного заряда (барионы - тяжелые ).
Записывать ядерные можно так, как это показано на примере превращения ядер Рu в ядра Кu при облучении плутониевой мишени ядрами :

Из этой записи видно, что суммы зарядов слева и справа (94 + 10 = 104) и суммы (242 + 22 = 259 + 5) равны между собой. Т. к. символ хим. элемента однозначно указывает на его ат. номер (заряд ядра), то при записи ядерных значения заряда частиц обычно не указывают. Чаще ядерные записывают короче. Так, ядерную образования 14 С при облучении ядер 14 N записывают след. образом: 14 N(n, р) 14 С.
В скобках указывают сначала бомбардирующую частицу иликвант, затем, через запятую, образующиеся легкие частицы иликвант. В соответствии с таким способом записи различают (n, р), (d, р), (п, 2п)и др. ядерные .
При столкновении одних и тех же частиц ядерные могут идти разл. способами. Напр., при облучении алюминиевой мишени могут протекать след. ядерные : 27 А1(n,) 28 А1, 27 А1(n, n) 27 А1, 27 А1(n, 2n) 26 А1, 27 А1(n, p) 27 Mg, 27 Al(n,) 24 Na и др. Совокупность сталкивающихся частиц наз. входным каналом ядерной , а частицы, рождающиеся в результате ядерной , образуют выходной канал.
Я дерные могут протекать с выделением и поглощением энергии Q. Если в общем виде записать ядерную как А(a, b)В, то для такой ядерной энергия равна: Q = [(М А + М а) - (М в + М b)] x с 2 , где М -массы участвующих в ядерной частиц; с - скорость света. На практике удобнее пользоваться значениями дельтаМ (см. ), тогда выражение для вычисления Q имеет вид: причем из соображения удобства обычно выражают в килоэлектронвольтах (кэВ, 1 а. е. м. = 931501,59 кэВ = 1,492443 х 10 -7 кДж).
Изменение энергии, к-рым сопровождается ядерная , может в 10 6 раз и более превышать энергию, выделяющуюся или поглощающуюся при хим. р-циях. Поэтому при ядерной становится заметным изменение масс взаимодействующих ядер: выделяемая или поглощаемая энергия равна разности сумм масс частиц до и после ядерной . Возможность выделения огромных кол-в энергии при осуществлении ядерных лежит в основе ядерной (см. ). Исследование соотношений между энергиями частиц, участвующих в ядерных , а также соотношений между углами, под к-рыми происходит разлет образующихся частиц, составляет раздел ядерной физики - кинематику ядерных р-ций.

Выходы ядерных , т. е. отношение числа ядерных к числу частиц, упавших на единицу площади (1 см 2) мишени, обычно не превышают 10 -6 -10 -3 . Для тонких мишеней (упрощенно тонкой можно назвать мишень, при прохождении через к-рую поток бомбардирующих частиц заметно не ослабевает) выход ядерной пропорционален числу частиц, попадающих на 1 см 2 пов-сти мишени, числу ядер, содержащихся в 1 см 2 мишени, а также значению эффективного сечения ядерной . Даже при использовании такого мощного источника налетающих частиц, каким является ядерный реактор, в течение 1 ч удается, как правило, получить при осуществлении ядерных под действием не более неск. мг , содержащих новые ядра. Обычно же масса в-ва, полученного в той или иной ядерной , значительно меньше.

Бомбардирующие частицы. Для осуществления ядерных используют n, р, дейтроны d, тритоны t, частицы, тяжелые (12 С, 22 Ne, 40 Аr и др.), е икванты. Источниками (см. )при проведении ядерных служат: смеси металлич. Be и подходящегоизлучателя, напр. 226 Ra (т. наз. ампульные источники), нейтронные генераторы, ядерные реакторы. Т. к. в большинстве случаев ядерных выше для с малыми энергиями (тепловые ), то перед тем, как направить поток на мишень, их обычно замедляют, используя , и др. материалы. В случае медленных осн. процесс почти для всех ядер - радиационный захват - ядерная типа т. к. кулоновский барьер ядра препятствует вылету ичастиц. Под действием протекают цепные р-ции .
В случае использования в качестве бомбардирующих частиц , дейтронов и др., несущих положит. заряд, бомбардирующую частицу ускоряют до высоких энергий (от десятков МэВ до сотен ГэВ), используя разл. ускорители. Это необходимо для того, чтобы заряженная частица могла преодолеть кулоновский потенциальный барьер и попасть в облучаемое ядро. При облучении мишеней положительно заряженными частицами наиб. выходы ядерных достигаются при использовании дейтронов. Связано это с тем, что энергия связи и в дейтроне относительно мала, и соотв., велико расстояние между и .
При использовании в качестве бомбардирующих частиц дейтронов в облучаемое ядро часто проникает только один нуклон - или , второй нуклон ядра дейтрона летит дальше, обычно в том же направлении, что и налетающий дейтрон. Высокие эффективные сечения могут достигаться при проведении ядерных между дейтронами и легкими ядрами при сравнительно низких энергиях налетающих частиц (1-10 МэВ). Поэтому ядерные с участием дейтронов можно осуществить не только при использовании ускоренных на ускорителе дейтронов, но и путем нагревания смеси взаимодействующих ядер до т-ры ок. 10 7 К. Такие ядерные называют термоядерными. В природных условиях они протекают лишь в недрах звезд. На Земле термоядерные р-ции с участием ,

Открытие нейтрона и его свойства

Ядерные реакции под действием нейтронов занимают особое место в ядерной физике. Из-за того, что нейтрон не имеет электрического заряда, он свободно проникает в любые атомные ядра и вызывает ядерные реакции. Рассмотрим сначала свойства нейтрона.
Нейтрон был открыт после предсказания Резерфорда, сделанного в 1920 году.
В опытах Бете и Беккера (1930 год) ядра бериллия облучались α-частицами и было зарегистрировано нейтральное излучение, природа которого не была определена.

α + Be → нейтральное излучение (какое?, γ?).

В опытах Жолио-Кюри (1932 год) α-частицы направлялись на бериллиевую мишень, а затем на парафиновую, чтобы определить природу нейтрального излучения. После парафиновой мишени наблюдался выход протонов. Схема опыта показана ниже.

α + Be → парафин → p

Регистрировались протоны отдачи с Е р = 4.3 МэВ. Возник вопрос: под действием каких частиц они образовывались?
Если бы они вызывались γ-квантами, то энергия γ-квантов Е γ должна была быть ~ 50 МэВ. γ-кванты с такой энергией не могли появиться из указанной реакции.
Чедвик проанализировал эти эксперименты и предположил, что в результате реакции вылетают нейтральные частицы с массой, сравнимой с массой протона. Далее он поставил опыт в камере Вильсона и наблюдал ядра отдачи азота. Он сравнил эти результаты с результатами опытов Жолио-Кюри, в которых регистрировались протоны отдачи из парафина, и определил массу этой нейтральной частицы из законов сохранения энергии

и импульса

m 1 v = m 1 v 1 + m p v p ;

где N − ядро азота; v 1 − скорость нейтральной частицы после столкновения; m 1 − масса нейтральной частицы. Она оказалась близкой к массе протона

Таким образом, стало ясно, что в опытах Жолио-Кюри протекала реакция, в которой испускались нейтральные частицы − нейтроны:

α + 9 Ве → 12 С+ n.

Они, попадая на парафин, выбивали протоны отдачи с энергией Е р = 4.3 МэВ.

Свойства нейтрона, полученные из многочисленных экспериментов, представлены ниже:
масса − m n c 2 = 939.5 МэВ, m n = 1.008665 а. е. м.,
магнитный момент − μ n = −1.91μ я,
спин − J = ћ/2,
время жизни − τ n = (10.61 ±0.16) мин,
среднеквадратичный радиус − = (0.78 ± 0.18)·10 -2 фм 2 .

Ядерные реакции не только дают новые сведения о природе и свойствах ядерных сил, но и практически используются в народном хозяйстве и в военном деле. Это в первую очередь относится к ядерным реакциям под действием нейтронов при низких энергиях.

11.4 Источники нейтронов

Источники нейтронов − это различные ядерные реакции.


Рис. 88: Спектр нейтронов.

1. Используется смесь радия с бериллием (иногда полония с бериллием), где протекает реакция

α + 9 Ве → 12 С+ n + 5.5 МэВ.

Кинетическая энергия нейтрона Т распределена по спектру
(рис. 88).
При распаде Ra образуются α-частицы с энергией 4.8 МэВ и 7.7 МэВ. Они вступают в реакцию с 9 Ве и генерируют поток нейтронов. Разброс по энергии нейтронов связан с тем, что α-частицы разных энергий создают нейтроны разных энергий. Ядро углерода 12 C образуется в основном и возбужденном состояниях.
Выход нейтронов ~ 10 7 нейтронов на 1 г Ra в секунду. Одновременно испускаются γ-лучи.

2. Другие источники нейтронов − фотоядерные реакции (γ,n), в которых получаются медленные и монохроматические нейтроны.

γ + 2 H → p + n, Q = -2.23 МэВ.

Используется ThC" (208 Tl). Он испускает γ-кванты с Е γ ~ 2.62 МэВ и Е n ~ Е р; Т n ~20 кэВ.

3. Фоторасщепление Be фотонами с энергией Е γ = 1.78 МэВ

γ + 9 Ве → 8 Ве + n, Q = -1.65 МэВ; Т n ~ 100 кэВ.

4. Вылет нейтронов под действием ускоренных дейтонов с E d = 16 МэВ в реакции

2 H + 9 Be → 10 B + n + 4.3 МэВ.

Е n = 4 МэВ, выход 10 6 нейтронов в секунду.

5. Реакция 2 H + 2 H → 3 Не + n + 3.2 МэВ,
D + D (лед из тяжелой воды), i?n = 2.5 МэВ.

6. Облучение дейтонами трития

2 H + 3 H → 4 Не + n + 17.6 МэВ.

Поскольку эта реакция экзотермическая, дейтоны ускоряются до энергии E d = 0.3 МэВ в газоразрядных трубках. Образуются монохроматические нейтроны с Е n ~ 14 МэВ.
Этот источник нейтронов используется в геологии.

7. В реакциях срыва под действием дейтонов с E d ~ 200 МэВ на тяжелых ядрах образуются n с
Е n ~ 100 МэВ.

11.5 Ядерные реакторы, цепная ядерная реакция

Самый мощный источник нейтронов − ядерные реакторы − устройства, в которых поддерживается управляемая цепная реакция деления.
В реакторе происходит деление ядер U и образуются нейтроны с Е n от 0 до 13 МэВ, интенсивность источника 10 19 нейтронов/с см2. Процесс деления идет под действием нейтронов, беспрепятственно проникающих в ядра из-за отсутствия кулоновского потенциального барьера.
При делении ядра образуются радиоактивные осколки и испускается 2-3 n, которые снова вступают в реакцию с ядрами U; идет цепной процесс (рис. 89).

n + 235 U → 236 U → 139 La + 95 Мо + 2n


Рис. 89: Иллюстрация деления ядра 235U.

Для описания процесса деления 235 U используется модель жидкой капли, в которой работает формула Вайцзеккера. После попадания нейтрона в ядро урана происходит конкуренция между поверхностной энергией нового ядра и энергией кулоновского расталкивания. В итоге под действием кулоновских сил ядро делится на два более легких ядра.
Энергия Q, освобождающаяся при делении ядра (A,Z)

(A,Z) → 2(A/2,Z/2) + Q,

вычисляется с использованием формулы Вайцзеккера

Q = 2ε(A/2,Z/2) − ε(A,Z) = (1 − 2 1/3)·а сим ·A 2/3 + (1 − 2 2/3)·а кул ·Z 2 ·A -1/3 ;

Q (МэВ) = -4.5A 2/3 + 0.26·Z 2 A -1/3 , ε − удельная энергия связи: Е св /А. Для ядра 235 U Q = 180 МэВ.

Для того, чтобы ядро разделилось, в него должна быть внесена энергия Е > Е а, где Е а Рис. 90: Потенциальная энергия ядра в зависимости от расстояния до центра ядра (сплошная кривая), E 0 − основное состояние, E 0 + Е а − возбужденное состояние, Е а − энергия активации
(рис. 90).
Мерой способности ядер к делению служит отношение энергии кулоновского отталкивания протонов к энергии поверхностного натяжения:

где Z 2 /A − параметр деления, чем он больше, тем легче ядро делится; Z 2 /A = 49 критическое значение параметра деления.
Иллюстрация процесса деления ядра приведена на рис. 91.
В ядерном реакторе процесс деления ядер многократно повторяется в результате образования многих поколений деления. В 1-м акте деления 235 U возникает в среднем 2.4 нейтрона. Время жизни одного поколения ~ 10 с. Если происходит рождение K поколений, то образуется ~ 2 K нейтронов через время ~ 2·10 -6 с. Если K = 80, число нейтронов будет 2 80 ~ 10 24 − это приведет к делению 10 24 атомов (140 г урана). Выделяющаяся при этом энергия 3·10 13 вт равна энергии, образующейся при сжигании 1000 тонн нефти.


Рис. 91: Процесс деления ядра, протекающий в ядерном реакторе.

В реакциях деления энергия выделяется в виде тепла. Отвод тепла из реактора осуществляется теплоносителем, к которому предъявляются особые требования. Он должен обладать большой теплоемкостью, слабо поглощать нейтроны и иметь низкую химическую активность. Не будем обсуждать конструктивные особенности элементов ядерного реактора. Заметим только, что при попадании тепловых нейтронов на ядро 235 U образуются быстрые нейтроны, а реакция идет только на медленных нейтронах. Следовательно, необходимо замедлить быстрые нейтроны. Это происходит в замедлителе. В качестве замедлителя используется углерод или тяжелая вода. Остановка процесса деления реализуется с помощью ядер кадмия, которые захватывают образующиеся нейтроны. Таким образом, в конструкцию ядерного реактора обязательно входит замедлитель нейтронов (углерод) и кадмиевые стержни, поглощающие образующиеся нейтроны.
В реакторах используется природный уран 238 U (99.3%) и обогащенный 235 U (0.7%). 235 U делится под действием тепловых нейтронов. 238 U используется в реакторах на быстрых нейтронах.
Процессы, происходящие в реакторе, характеризуются следующими вероятностями:
ν − количество образованных быстрых нейтронов;
ε − коэффициент размножения быстрых нейтронов;
Р − вероятность нейтрону дойти до тепловой энергии;
ƒ − вероятность захвата нейтрона в процессе замедления;
σ t /σ tot − вероятность вызвать реакцию деления.

Произведение этих вероятностей дает оценку коэффициента размножения k тепловых нейтронов в ядерном реакторе:

Цепная реакция идет, если k > 1; входящие в коэффициент размножения величины имеют следующие значения: ν = 2.47; ε = 1.02; Р = 0.89; ƒ = 0.88; σ t /σ tot = 0.54.
Таким образом, k ∞ = 1.07 для реактора бесконечных размеров. В реальных условиях к эф < k ∞ , т.к. часть нейтронов уходит из реактора.
В реакторах на быстрых нейтронах (239 Ри и 238 U) происходит следующий процесс:

В результате этой реакции воспроизводится 239 Рu. Образовавшийся плутоний вступает в реакцию с нейтроном: n + 239 Рu, образуется ν = 2.41 нейтронов.
Число ядер 239 Ри удваивается через каждые 7-10 лет.
Реакция деления атомных ядер используется для получения атомной энергии. Ядерные реакторы работают на многих атомных электростанциях.

11.6 Реакции слияния, синтез легких ядер

Другим источником атомной энергии может служить синтез легких атомных ядер. Легкие ядра связаны менее прочно, и при их слиянии в тяжелое ядро выделяется больше энергии. Кроме того, термоядерные реакции чище из-за отсутствия сопровождающих их радиоактивных излучений, чем цепные реакции деления.
Для получения термоядерной энергии могут быть использованы следующие реакции синтеза:

d + d = 3 He + n + 4 МэВ,
d + d = t + р + 3.25 МэВ,
d + t = 4 Не + n + 17.б МэВ,
3 Не + d = 4 Нe + р + 18.3 МэВ,
6 Li + 2di = 2 4 Не + 22.4 МэВ. J

Энергия ядер, вступающих в реакцию, должна быть достаточной для преодоления кулоновского потенциального барьера. На рис. 92 показана энергетическая зависимость сечений некоторых реакций. Как видно из рисунка, синтез ядер дейтерия d и трития t является наиболее предпочтительным. В этой реакции синтеза низок кулоновский потенциальный барьер и велико сечение взаимодействия при малых энергиях сливающихся ядер. Для протекания реакции необходимо иметь достаточную концентрацию этих ядер в единице объема и достаточную температуру разогретой плазмы.
Число актов слияния R ab в единицу времени в единице объема определяется соотношением

R ab = n a ·n b ·w ab (T).
w ab (T) = σ ab ·v ab ,

где n a , n b − число ядер a, b; σ ab − эффективное сечение реакции, v ab − относительная скорость частиц в плазме, Т − температура. В результате реакции освобождается энергия

W = R ab ·Q ab ·τ,

где R ab − число актов слияния, Q ab − энергия, выделившаяся в 1 акте, τ − время.
Пусть n a = n b = 10 15 ядер/см 3 , Т = 100 кэВ. Тогда W ~ 10 3 вт/см 3 с.
В самоподдерживающейся термоядерной реакции должно выделяться больше энергии, чем идет на нагрев и удержание плазмы. Затраты на нагрев n a = n b = 2n частиц до температуры Т: 3n·kТ: k − постоянная Больцмана. Таким образом, надо удовлетворить условию:

n 2 ·w ab ·Q ab ·τ > 3nkТ

(высвобождающаяся энергия > энергии нагрева).
Лоусон сформулировал следующее условие для реакции слияния d + t:

nτ > 10 14 с·см -3 ,

где nτ − параметр удержания. На рис. 93 показана зависимость этого параметра от температуры. Реакция идет, если nτ > ƒ(T). Температура Т ~ 2·10 8 K соответствует энергии 10 кэВ. Минимальное значение параметра удержания nτ = 10 14 с/см 3 для реакции d + t достигается при температуре 2·10 8 K.

Рис. 93: Зависимость параметров удержания от температуры. Заштрихованная область ƒ(Т) − зона управляемого термоядерного синтеза для реакции d + t. − значения параметров, достигнутые на различных установках к 1980 году.

Для других реакций:

Удержание плазмы, имеющей необходимые условия для протекания реакции, реализуется в установках типа Токамак с помощью магнитного поля. Такие установки работают в России и в ряде других стран. Как видно из рис. 93, режим управляемого термоядерного синтеза пока не достигнут.
Делаются попытки получить необходимые для термоядерного синтеза условия с помощью лазерных установок. В этом случае небольшой объем, в котором заключены ядра дейтерия и трития, обжимается со всех сторон лазерным излучением. При этом ядра дейтерия и трития нагреваются до нужной температуры. Лазерный термояд требует введения коэффициента 100, т.к. велика бесполезная энергия, идущая на накачку лазера.
Попытки осуществить управляемый термоядерный синтез в лабораторных условиях наталкиваются на ряд трудностей.

  1. 1. До сих пор не удается получить устойчивый режим высокотемпературной плазмы.
  2. 2. Велики энергетические потери в плазме даже из-за малых концентраций примесей атомов с большими Z.
  3. 3. Не решена "проблема первой стенки" в Токамаке, ограничивающей плазму реактора (поток нейтронов ее разрушает).
  4. 4. В природе отсутствует радиоактивный тритий t с периодом полураспада Т 1/2 = 12.5 лет, поэтому существует проблема воспроизводства трития в реакции

n + 7 Li = α + t + n.

До сих пор не удалось преодолеть эти трудности и получить управляемую термоядерную реакцию синтеза.
В естественных условиях реакции термоядерного синтеза протекают на Солнце и в звездах.

Литература

  1. 1. Широков Ю.М., Юдин Н.П. Ядерная физика. -М.: Наука, 1972.
  2. 2. Капитонов И.М. Введение в физику ядра и частиц. -М.: УППС, 2002.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация