Электрическая проводимость. Абсолютная скорость и подвижность ионов. Механизм движения ионов. Абсолютная скорость ионов

Главная / Земля

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, ) и фенолфталеина и поместим на стеклянную пластинку (рис. 107). Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток. Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но в общем она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.

Рис. 107. Опыт, показывающий движение ионов. Листок фильтровальной бумаги пропитан раствором электролита и фенолфталеина, – нитка, смоченная раствором электролита

68.1. Для определения знака полюсов источника употребляют «полюсоискатели», представляющие собой небольшую стеклянную ампулу с двумя введенными в нее проволоками (рис. 108). Ампула

заполняется раствором поваренной соли с добавленным к нему фенолфталеином, краснеющим под действием щелочи. На каком из полюсов будет появляться красная окраска?

Рис. 108. К упражнению 68.1

Скорость направленного движения иона, т. е. путь, пройденный ионом в растворе под действием электрического поля в направлении к электроду за единицу времени, зависит от действующей на ион силы, т. е. от напряженности электрического поля:

где v - скорость движения иона, м/с; Е - напряженность поля, В/м; и - коэф­фициент пропорциональности, называемый электрической подвижностью иона или просто подвижностью иона, м 2 /(В * с).

Подвижность иона характеризует его способность преодолевать со­противление среды при направленном движении в электрическом по­ле. Рассмотрим основные факторы, влияющие на подвижность иона в водных растворах при наличии электрического поля.

Заряд и радиус иона, т. е. его природа. Влияние этих характери­стик иона взаимосвязано, но неоднозначно: чем больше заряд и чем меньше радиус иона, тем сильнее гидратируется ион, тем толще его гидратная оболочка и, следовательно, тем ниже подвижность иона в растворе. В соответствии с этим в ряду однозарядных ионов Li + , Na + , К + , Rb + , Cs + , который характеризуется последовательным возрастани­ем ионного радиуса, радиус гидратированного иона, наоборот, умень­шается, а определенная опытным путем электрическая подвижность ионов возрастает от Li + к Cs + :

Отсутствие резких различий в подвижности многозарядных и од­нозарядных ионов также объясняется большей гидратацией многоза­рядных ионов, что увеличивает размер и снижает их подвижность в электрическом поле несмотря на больший заряд.

Природа растворителя, его диэлектрическая проницаемость и вязкость. Чем полярнее растворитель, тем лучше сольватируется ион, тем больше размеры гидратированного иона и, следовательно, меньше его подвижность. Вязкость растворителя обуславливает сопротивление среды движущемуся иону: чем больше вязкость, тем меньше подвиж­ность иона.

Температура раствора. При повышении температуры уменьшают­ся вязкость растворителя и толщина сольватных оболочек ионов, а также снижается межионное взаимодействие. Все это приводит к уве­личению подвижности ионов.

Ионная сила раствора. Чем больше ионная сила раствора, тем сильнее межионное электростатическое взаимодействие и создаваемые им тормозящие эффекты.

Концентрация ионов. Чем больше концентрация ионов в раство­ре, тем сильнее электростатическое взаимодействие ионов, снижающее их подвижность. Концентрация ионов зависит от силы электролита и его количества в растворе. При разбавлении растворов сильных электро­литов подвижность соответствующих ионов растет, поскольку уменьша­ется их концентрация, а следовательно, снижается межионное взаимо­действие в растворе. В растворах слабых электролитов (обычно а < 0,03) подвижность ионов практически не зависит от разбавления, так как концентрация ионов в этих растворах всегда невелика.

Поскольку подвижность ионов зависит от многих факторов, и прежде всего от их концентрации в растворе, то для характеристики свойств ионов используются значения предельной электрической под­вижности ионов в данном растворителе при данной температуре, кото­рые для водных растворов приведены в табл. 24.1.

Предельной подвижностью иона (и°, м 2 /(В * с)) называется средняя скорость его направленного движения, приобретаемая им в бесконечно разбавленном растворе в однородном элек­трическом поле напряженностью 1 В/м.

Различают предельные подвижности катионов и + 0 и анионов и - 0, поскольку в электрическом поле эти частицы движутся в противопо­ложных направлениях.

Предельная подвижность иона в данном растворителе зависит только от природы иона и температуры. Приведенные в таблице дан­ные показывают, что у большинства ионов предельные подвижности очень малы: (3 - 8) * 10 -8 м 2 /(В * с). Значительно больше подвижность ионов Н + (Н3О +) и ОН-. Это связано с тем, что данные ионы образуют­ся при обратимой диссоциации молекул воды, поэтому для них харак­терен «эстафетный» механизм перемещения. Под действием электри­ческого поля ион гидроксония передает протон по водородной связи молекуле воды ближайшего ассоциата. В результате этот ассоциат приобретает избыточный положительный заряд, который он передает соседнему ассоциату, отдавая протон от ближайшей к нему молекулы воды вдоль силовых линий электрического поля:

Таким образом, за счет перескока протона от ассоциата к ассоциа­ту по водородной связи происходит быстрое перемещение иона гидрок-сония к отрицательному полюсу.

Аналогично происходит перемещение иона гидроксила в водной среде к положительному полюсу путем отщепления им протона от мо­лекулы воды ближайшего ассоциата. Однако подвижность иона гид­роксила меньше, чем иона Н 3 0 + , так как протон в ионе Н 3 0 + связан менее прочно, чем в молекуле воды. В неводных растворителях, где невозможен "эстафетный" механизм движения, ионы Н + и ОН - не имеют аномально большой скорости движения.

Движение ионов в электролитах в некоторых случаях может быть показано весьма наглядно.

Рис. 2.

Пропитаем листок фильтровальной бумаги раствором электролита (сернокислого натра, Na 2 SO 4) и фенолфталеина и поместим на стеклянную пластинку (рис. 2).

Поперек бумаги положим обыкновенную белую нитку, смоченную раствором едкого натра (NaOH). Бумага под ниткой окрасится в малиновый цвет благодаря взаимодействию ионов гидроксила (ОН) из NaOH с фенолфталеином. Затем прижмем к краям листка проволочные электроды, присоединенные к гальваническому элементу, и включим ток.

Ионы гидроксила из едкого натра начнут двигаться к аноду, окрашивая бумагу в малиновый цвет. По скорости перемещения малинового края можно судить о средней скорости движения ионов под влиянием электрического поля внутри электролита. Опыт показывает, что эта скорость пропорциональна напряженности поля внутри электролита. При заданном поле эта скорость для разных ионов несколько различна. Но, в общем, она невелика и для обычно применяющихся полей измеряется сотыми и даже тысячными долями сантиметра в секунду.

Теория электролитической диссоциации

Сванте Аррениус обратил внимание на тесную связь между способностью растворов солей, кислот и оснований проводить электрический ток и отклонениями растворов этих веществ от законов Вант-Гоффа и Рауля. Он показал, что по электропроводности раствора можно рассчитать величину его осмотического давления, а, следовательно, и поправочный коэффициент i. Значения i, вычисленные им из электропроводности, хорошо совпали с величинами, найденными для тех же растворов иными методами.

Причиной чрезмерно высокого осмотического давления растворов электролитов является, согласно Аррениусу, диссоциация электролитов на ионы. Вследствие этого, с одной стороны, увеличивается общее число частиц в растворе, а, следовательно, возрастают осмотическое давление, понижение давления пара и изменения температур кипения и замерзания, с другой, -- ионы обусловливают способность раствора проводить электрический ток.

Эти предположения в дальнейшем были развиты в стройную теорию, получившую название теории электролитической диссоциации. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называются катионами; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами; к ним принадлежат ионы кислотных остатков и гидроксид-ионы. Как и молекулы растворителя, ионы в растворе находятся в состоянии неупорядоченного теплового движения.

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация НСl выразится уравнением:

НСl = Н + + Сl -

Распад электролитов на ионы объясняет отклонения от законов Вант-Гоффа и Рауля. В качестве примера можно привести понижение температуры замерзания раствора NaCl. Теперь нетрудно понять, почему понижение температуры замерзания этого раствора столь велико. Хлорид натрия переходит в раствор в виде ионов Na + и Сl - . При этом из одного моля NaCl получается не 6,02 * 10 23 частиц, а вдвое большее их число. Поэтому и понижение температуры замерзания в растворе NaCl должно быть вдвое больше, чем в растворе неэлектролита той же концентрации.

Точно так же в очень разбавленном растворе хлорида бария, диссоциирующего согласно уравнению осмотическое давление оказывается в 3 раза больше, чем вычисленное по закону Вант-Гоффа, так как число частиц в растворе в 3 раза больше, чем, если бы хлорид бария находился в нем в виде молекул ВаСl 2 .

ВаСl 2 =Ва 2+ + 2Сl -

Таким образом, особенности водных растворов электролитов, противоречащие с первого взгляда законам Вант-Гоффа и Рауля, были объяснены на основе этих же законов.

Однако теория Аррениуса не учитывала всей сложности явлений в растворах. В частности, она рассматривала ионы как свободные, независимые от молекул растворителя частицы. Теории Аррениуса противостояла химическая, или гидратная, теория растворов Менделеева, в основе которой лежало представление о взаимодействии растворенного вещества с растворителем. В преодолении кажущегося противоречия обеих теорий большая заслуга принадлежит русскому ученому И. А. Каблукову, впервые высказавшему предположение о гидратации ионов. Развитие этой идеи привело в дальнейшем к объединению теорий Аррениуса и Менделеева.

Свяжем электропроводность электролита со скоростью движения его ионов в электрическом поле . Для вычисления электропроводности надо подсчитать число ионов, проходящих через поперечное сечение электролитического сосуда в единицу времени. Так как электричество переносится ионами различных знаков, движущимися в противоположных направлениях, то общая сила тока складывается из количеств электричества, перенесенных катионами (I +) и анионами (I -) :

Обозначим:

u¢ - скорость движения катионов (см/с);

v¢ - скорость движения анионов (см/с);

с¢ - эквивалентная концентрация (г-экв/см 3);

q - поперечное сечение цилиндрического сосуда (см 2);

l - расстояние между электродами (см);

Е - разность потенциалов между электродами (В).

Подсчитаем количество катионов, проходящих через поперечное сечение электролита в 1 секунду. За это время через сечение пройдут все катионы, находившиеся на расстоянии не более чем u¢ см от выбранного сечения, т.е. все катионы в объеме u¢q:

Т.к. каждый г-экв ионов несет согласно закону Фарадея F =96485 к электричества, то сила тока (в А) :

I + = n + F = u¢qc + F

Аналогично для анионов:

I - = n - F = v¢qc - F

Для суммарной силы тока (с + = с - = с¢) :

I = I + + I - = (u¢ + v¢)qc¢F

Скорости движения ионов u¢ и v¢ зависят от природы ионов, напряженности электрического поля Е/l , концентрации, Т, вязкости среды и т.п. Пусть все факторы постоянны, кроме напряженности электрического поля; можно считать, что скорость ионов пропорциональна приложенной силе, т.е. напряженности поля:

u¢ = u , v¢ = v

u, v - скорости ионов в стандартных условиях, т.е. при напряженности поля, равной 1 В/см; они называются абсолютными подвижностями ионов и измеряются в см 2 /(с×В).

I = (u + v)c¢qFE/l

По закону Ома I = E/R = E×K = E×k

Отсюда k = (u + v)c¢qF/S = (u + v)c¢F (т.к. q º S)

l = ; с¢ = с/1000 ; l = k/с¢ = (u + v)F

u×F и v×F - это скорости движения ионов, выраженные в электростатических единицах; они называются подвижностями ионов :

u×F = l + , v×F = l -

Для сильных электролитов : l = l + + l -

Для слабых электролитов : с + = с×a , с - = с×a , l = (l + + l -)×a

При бесконечном разведении (j ® ¥ , a ® 1 , с + = с - = с) :

l ¥ = l о + + l о -

Как для сильных, так и для слабых электролитов. Величины l о + и l о - являются предельными подвижностями ионов . Они равны эквивалентным электропроводностям катиона и аниона при бесконечном разведении и измеряются в тех же единицах, что и l и l ¥ , т.е. в см 2 /(Ом×г-экв). Вышеприведенное уравнение является выражением закона Кольрауша : эквивалентная электропроводность при бесконечном разведении равна сумме предельных подвижностей ионов .


Т.о., для всех электролитов можно записать:

l с = a с ×l ¥ , a с = l с / l ¥

l + и l - зависят от концентрации (разведения), особенно для сильных электролитов; l о + и l о - - табличные величины. Все эти величины относятся к 1 г-экв ионов.

Подвижность является важнейшей характеристикой ионов , отражающей их специфическое участие в электропроводности электролита. В водных растворах все ионы, за исключением ионов Н 3 О + и ОН - , обладают подвижностями одного порядка; их абсолютные подвижности (u и v) равны нескольким см в час.

Эквивалентная электропроводность растворов солей выражается величинами порядка 100 - 130 см 2 /(г-экв×Ом). Ввиду исключительной подвижности иона гидроксония величины l ¥ для кислот в 3-4 раза больше, чем для солей; щелочи занимают промежуточное положение.

Движение иона можно уподобить движению макроскопического шарика в вязкой среде и применить в этом случае формулу Стокса :

где е - заряд электрона; z - число элементарных зарядов иона; r - эффективный радиус иона; h - коэффициент вязкости; E/l - напряженность поля.

Движущую силу - напряженность поля Е/l при вычислении абсолютных подвижностей принимаем равной единице. Следовательно, скорость движения ионов обратно пропорциональна их радиусу. Рассмотрим ряд Li + , Na + , K + . Так как в указанном ряду истинные радиусы ионов увеличиваются, то подвижности должны уменьшаться в той же последовательности. Однако в действительности это не так. Подвижности увеличиваются при переходе от Li + к K + почти в два раза. Из этого можно сделать заключение, что в растворе и ионной решётке ионы обладают разными радиусами. При этом чем меньше истинный (кристаллохимический) радиус иона, тем больше его эффективный радиус в электролите. Это явление можно объяснить тем, что в растворе ионы не свободны, а гидратированы. Тогда эффективный радиус движущегося в электрическом поле иона будет определяться в основном степенью его гидратации, то есть количеством связанных с ионом молекул воды.

Связь иона с молекулами растворителя ионно-дипольная, а так как напряжённость поля на поверхности иона лития гораздо больше, чем на поверхности иона калия, то степень гидратации иона лития больше степени гидратации иона калия. Согласно формуле Стокса многозарядные ионы должны обладать большей подвижностью, чем однозарядные. Однако скорости движения многозарядных ионов мало отличаются от скоростей движения однозарядных, что, очевидно, объясняется большей степенью их гидратации.

Все ткани организма пропитаны и омываются биологическими жидкостями, в которых растворены сильные и слабые электролиты. Поэтому такие биологические жидкости как кровь, лимфа, спинномозговая жидкость, слезная жидкость, слюна и т.д. относятся к проводникам второго рода.

Абсолютная скорость движения ионов. В растворах электролитов сольватированные ионы находятся в беспорядочном движении. При наложении электрического поля возникает упорядоченное движение ионов к противоположно заряженным электродам.

Сравнение скоростей движения различных видов ионов производят при градиенте потенциала поля 1 В/м. Для этих условий скорость движения ионов называют абсолютной, обозначают буквой  и выражают в м 2 B –1 c –1 . Абсолютная скорость движения иона –– это расстояние в метрах, которое проходит ион за 1 с при градиенте потенциала 1В/м. Численные значения абсолютных скоростей движения ионов в данном растворителе зависят только от их природы и температуры.

Для оценки способности ионов к перемещению под действием внешнего поля пользуются также количественной характеристикой – подвижность ионов (U). Подвижность иона представляет собой произведение числа Фарадея (F = 96465 BсСммоль –1) на абсолютную скорость движения иона и выражается в См м 2 моль –1:

Значения абсолютных скоростей движения и подвижностей ионов при 25 0 С представлены в таблице 1:

Таблица 1


Катион

м 2 B –1 c –1


U

См м 2 моль –1


Анион

м 2 B –1 c –1


U

См м 2 моль –1


H +

36,310 –8

349,910 –4

OH –

20,610 –8

199,210 –4

Li +

4,010 –8

38,710 –4

F –

5,710 –8

55,410 –4

Na +

5,210 –8

50,310 –4

Cl –

7,910 –8

76,310 –4

K +

7,610 –8

73,510 –4

Br –

8,110 –8

78,410 –4

Rb

8,010 –8

77,510 –4

I –

8,010 –8

76,910 –4

Cs +

8,010 –8

77,510 –4

7,410 –8

71,510 –4




7,610 –8

73,510 –4

CH 3 COO –

4,210 –8

40,910 –4

Mg 2+

5,510 –8

106,110 –4




7,210 –8

138,610 –4

Al 3+

6,510 –8

183,210 –4




8,310 –8

159,610 –4

Из приведенных в табл.1 данных можно усмотреть некоторые закономерности. Во-первых, абсолютная скорость движения катионов растет в пределах одной группы периодической системы элементов с ростом порядкового номера, как это видно из данных для катионов щелочных металлов. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na + , Mg 2+ , Al 3+ показывает незначительное увеличение абсолютной скорости движения с увеличением заряда иона. Оба эти факта объясняются явлением сольватации ионов в растворе. Молекулы растворителя группируются вокруг иона и увеличивают его эффективный радиус (который называется гидродинамическим радиусом).

В электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион Li + сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион калия. Следовательно, небольшие ионы имеют больший гидродинамический радиус и характеризуются меньшей абсолютной скоростью движения. Этим же объясняется малое отличие в абсолютной скорости движения ионов Na + , Mg 2+ , Al 3+ . С увеличением заряда, естественно, резко возрастает сольватная оболочка и тем самым размер перемещающейся частицы. Это увеличение размера почти полностью компенсирует эффект увеличения заряда.

Обращает также на себя внимание аномально высокая абсолютная скорость движения ионов гидроксония H 3 O + (H +) и гидроксила OH – . Можно предположить, что ион Н + должен быть сильно сольватирован, тем не менее он способен быстро передвигаться в растворе. В этом случае нельзя применить гидродинамический довод, поскольку действует так называемый «эстафетный механизм» перемещения ионов гидроксония и гироксила. В цепочке, построенной из молекул воды, заряд может перейти от одного конца цепочки к другому в результате сравнительно небольшого перемещения протонов, образующих водородные связи между молекулами воды, например:

Из приведенной схемы видно, что перемещение электрического заряда происходит без перемещения атомов водорода. Иными словами, вместо одного иона Н + , двигающегося в растворе, существует эффективное движение иона Н + , включающее образование и разрыв связей вдоль длинной цепочки молекул воды. Аналогичную схему легко изобразить и для перемещения гидроксид-иона.


Повышение температуры влияет на абсолютную скорость движения ионов путем дегидратации и уменьшения вязкости среды, что способствует увеличению скорости перемещения ионов.

Удельная электрическая проводимость
Электрическая проводимость (L) –– это способность веществ проводить электрический ток под действием электрического поля. Она представляет собой величину обратную электрическому сопротивлению R:

L = (2)

Единицей электрической проводимости в CИ является сименс (См), и 1 См = 1 Ом –1 .

Известно, что R = , поэтому L = =
, так как = æ, то:

L == æ , (3)

г


де æ (каппа) – удельная электрическая проводимость (См/м), S – площадь плоских электродов (м 2), между которыми заключен раствор,ℓ – расстояние между электродами (м).

Удельной электрической проводимостью называется электрическая проводимость 1м 3 раствора, находящегося в однородном электрическом поле при напряженности 1 В/м. Единицей удельной проводимости в CИ служит сименс/метр (См/м). Удельная электрическая проводимость зависит от многих факторов и, прежде всего, от природы электролита, его концентрации и температуры. Изотермы удельной электрической проводимости (рис.1) дают представление о характере зависимости удельной электрической проводимости от природы электролита и его концентрации для 25 0 С (298К). Анализ изотермы позволяет сделать следующие выводы:

1. Удельная электрическая проводимость максимальна для растворов сильных кислот и несколько меньше – сильных оснований, что объясняется полной диссоциацией этих электролитов и высокой подвижностью ионов Н 3 О + и ОН – .

2. Наименьшие значения во всем диапазоне концентраций имеет удельная электрическая проводимость растворов слабых электролитов (СН 3 СООН) в связи с низкой концентрацией ионов (3. Удельная электрическая проводимость растет с увеличением концентрацией до некоторых максимальных значений, что отвечает увеличению количества ионов в единице объема раствора. Достигнув максимума, удельная электрическая проводимость начинает уменьшаться, несмотря на рост концентрации электролита. Подобный характер зависимости æ от С связан у сильных электролитов с уменьшением подвижности ионов из-за возрастающего по мере увеличения концентрации раствора межионного взаимодействия, а у слабых электролитов – с уменьшением степени электролитической диссоциации электролита, а значит, и уменьшением количества ионов в единице объема раствора.

С увеличением температуры удельная электрическая проводимость растет. Это обусловлено, в основном, дегидратацией ионов и уменьшением вязкости среды, т.е. уменьшением сопротивления движению ионов.

Удельная электрическая проводимость растворов зависит от разведения. Разведение величина обратная концентрации. (Разведение обозначается символом V или 1/С и характеризует объем раствора, содержащий 1 моль электролита). Когда разведение мало – раствор концентрирован и степень диссоциации слабого электролита мала. С ростом разведения сначала увеличивается, а, следовательно, и увеличивается удельная электрическая проводимость. При дальнейшем увеличении разведения степень диссоциации приближается к единице и перестает расти, в то время как общее количество электролита в единице объема уменьшается, что вызовет падение электрической проводимости.

Удельная электрическая проводимость может быть вычислена теоретически:
æ=FC( А +  K) – для слабых электролитов (4)

æ=FCfa( А +  K) –для сильных электролитов (5)

где F – число Фарадея, С – концентрация электролита (моль/м 3),  – степень диссоциации слабого электролита, f a – коэффициент активности сильного электролита,  А и  K – абсолютная скорость движения аниона и катиона в м/сек при градиенте потенциала 1 В/м.

Молярная электрическая проводимость.

Молярная электрическая проводимость – электрическая проводимость 1 моль электролита, находящегося в растворе между параллельными электродами с расстоянием между ними 1 м и градиенте потенциала 1В/м. Между удельной электрической проводимостью и молярной электрической проводимостью (λ m) существует зависимость:

λ m = æ/C, (6)

где λ m (лямда) – молярная электрическая проводимость, Смм 2 моль –1 , æ – удельная электрическая проводимость, Смм –1 ; С – концентрация электролита в растворе, моль/м 3 .

Обычно молярная концентрация характеризуется количеством вещества в 1 дм 3 (1л), а не в 1м 3 . В этом случае соотношение имеет вид:

λ m = æ/1000C (7)

Молярную электрическую проводимость, как и удельную, можно рассчитать теоретически:

λ m =
= F( А +  K) – для слабых электролитов (8)

λ m =
= Ffa( А +  K) –для сильных электролитов (9)

Значение молярной электрической проводимости при разбавлении раствора (при С  0) увеличивается, стремясь к постоянной и специфической для каждого электролита величине, называемой предельной молярной электрической проводимостью и обозначаемой λ(рис.2).

Предельной молярной электрической проводимостью электролита называется значение молярной электрической проводимости при бесконечном разбавлении.

Увеличение значений λ m связано у слабых электролитов с ростом степени диссоциации при разбавлении раствора (1 при С  0), т.е. связано с увеличением количества ионов, образуемых 1 моль электролита при данной температуре.

У сильных электролитов при бесконечном разбавлении уменьшается межионное взаимодействие, абсолютная скорость движения ионов достигает предельных значений, поэтому молярная электрическая проводимость перестает зависеть от концентрации и становится постоянной величиной.


Рис.2. Зависимость молярной элекрической проводимости от

концентрации раствора для некоторых электролитов
Молярная электрическая проводимость при данном разбавлении λ m всегда меньше значения предельной молярной электрической проводимости λ. Отношение этих величин, т.е. λ m /λ характеризует:

а) для слабого электролита – степень его диссоциации при данной концентрации раствора, т.е. =  (соотношение Аррениуса)

б) для сильного электролита – коэффициент активности (f a) при данной концентрации, т.е. = f a

Полагая, что при бесконечном разбавлении растворов слабых электролитов

  1, а растворов сильных электролитов f a  1, уравнения (8), (9) примут следующий вид:

λ= F ( А +  K) (10)

Следовательно, при бесконечном разбавлении растворов электролитов их молярная электрическая проводимость зависит только от абсолютных скоростей движения ионов к электродам. Так как U = F  , то:

λ = U K + U A (11)

Из последнего уравнения следует, что сумма подвижностей катиона и аниона равна молярной электрической проводимости при бесконечном разведении.

Часто подвижность катиона U K обозначают λ и называют предельной проводимостью катиона, а подвижность аниона U A обозначают λ и называют предельной подвижностью аниона. Тогда уравнение λ = U K + U A будет иметь следующий вид:

λ = λ + λ (12)

Отсюда следует, что сумма предельных проводимостей катиона и аниона равна молярной электрической проводимости электролита при бесконечном разведении.

Уравнения (10), (11) и (12) выражают закон независимости движения ионов в бесконечно разбавленных растворах электролитов (закон Кольрауша).

Отсюда, например, предельная молярная электрическая проводимость уксусной кислоты будет равна:

λ(CH 3 COOH)= λ(H +)+ λ(CH 3 COO –).
Электрическая проводимость биологических объектов и ее использование в медико-биологических исследованиях
Внутренняя среда организма обладает ионной проводимостью. В проведении тока участвуют неорганические ионы калия, натрия, хлора, карбоната, фосфатов, ионы органических кислот, белки и другие органические соединения.

В соответствии с законами электрической проводимости лучше проводят ток ткани небольшой плотности, содержащие много воды и высокоподвижных ионов. Это кровь, лимфа, мышцы, подкожная клетчатка. Низкая электрическая проводимость наблюдается у нервной ткани, жира, кости и кожи (табл.2).

Величина электрической проводимости тканей изменяется при патологических изменениях органов и тканей. Это широко используется в диагностике некоторых заболеваний. Так, в норме удельная электрическая проводимость мочи человека колеблется в пределах 1,7 – 2,3 Смм –1 . При заболеваниях почек (нефрит, нефросклероз, гломерулонефрит) величина электрической проводимости может уменьшаться до 0,9 – 1,4 Смм –1 . Уменьшение электрической проводимости коррелирует с уменьшением концентрации NaCl и увеличением содержания белка.
Таблица 2.

Удельная электрическая проводимость биологических жидкостей тканей при 37 0 С

При диабете электрическая проводимость мочи также понижена до 0,9–1,4 Смм –1 из-за повышенного содержания сахара, являющегося неэлектролитом.

Исследования, проведенные на желудочном соке, показали, что его электрическая проводимость и общая кислотность при наличии свободной соляной кислоты величины связанные. Удельная электрическая проводимость менее 0,8 Смм –1 указывает на гипокислотность, значения в пределах 0,8 – 1,0 Смм –1 – на нормальную кислотность и свыше 1,3 Смм –1 – гиперкислотность.

В практической медицине широко используется метод реографии. Реография ­– метод исследования кровоснабжения органов, в основе которого лежит принцип регистрации изменений электрического сопротивления тканей в связи с меняющимся кровенаполнением. Чем больше приток крови к тканям, тем меньше их сопротивление.

Кондуктометрия широко используется для определения степени и константы диссоциации биологически активных веществ, изоэлектрических точек аминокислот, пептидов и белков, концентрации и растворимости лекарственных препаратов.

В санитарно-гигиенических лабораториях метод кондуктометрии используется для контроля процесса очистки и качества воды, содержания вредных примесей в воздухе, воде, пищевых продуктах.

Измерение электрической проводимости

Электрическую проводимость растворов на практике определяют по значению их сопротивления электрическому току, протекающему между двумя электродами, погруженными в раствор.

Измерение сопротивления растворов производят компенсационным методом с помощью моста сопротивления Уитстона, модернизированного Кольраушем для измерения сопротивления растворов электролитов (рис.3). Отличие установки Кольрауша заключается, во-первых, в использовании переменного тока низкой частоты вместо постоянного, чтобы избежать процесса электролиза и поляризации электродов.

Нуль-инструментом может служить гальванометр, осциллограф или телефон.


АС – реохорд; Т – телефонная трубка;  – генератор переменного тока; Д – скользящий контакт.

Установка Кольрауша содержит 4 сопротивления: R m – подбираемое экспериментально сопротивление на магазине сопротивлений, R 1 и R 2 – сопротивления участков реохорда, которые меняются передвижением скользящего контакта Д для уравновешивания сопротивления плеча ВС, содержащего известное сопротивление R m и плеча АВ, содержащего измеряемое сопротивление R х. При компенсации моста наблюдается условие:
или R х = R m

В этом случае ток через диагональ моста ВД не протекает, что фиксируется по исчезновению звука в телефонной трубке.

Конструкции измерительных ячеек весьма разнообразны (рис.4). В прямой кондуктометрии обычно применяют ячейки с жестко закрепленными в них электродами. В методах кондуктометрического титрования наряду с ячейкой этого типа часто используют так называемые погружные электроды, позволяющие проводить титрование в любых сосудах, в которых можно разместить электроды.

Рис.4. Ячейки для кондуктометрических измерений:

а – ячейка с жестко закрепленными электродами

б – погружные электроды
Прямые определения удельной электрической проводимости очень сложны, так как сопротивление раствора зависит не только от скорости движения ионов, но и от их пути. Путь ионов обусловлен геометрией сосуда, площадью электродов и расстоянием между ними.

Выдержать площадь электродов 1 м 2 (1см 2) и расстояние между ними 1 м (1 см) с высокой точностью невозможно. Однако при стационарном расположении электродов величина кондуктометрической ячейки, необходимая для расчета удельной электрической проводимости, для различных растворов электролитов является постоянной величиной, обозначается К с и называется постоянной конуктометрической ячейки (сосуда). Постоянная сосуда (К с) показывает, во сколько раз сопротивление, измеряемое в данном сосуде, больше, чем измеренное в стандартном с площадью электродов 1 м 2 (1 см 2) при расстоянии между ними 1 м (1 см).

Поскольку R = 
= K c имеем R = K c

или R = К с /æ , так как = æ , отсюда K c = R  æ

На практике постоянную сосуда К с определяют по электрической проводимости стандартного раствора хлорида калия, удельная электрическая проводимость которого при различных температурах является справочной величиной:

K c = æ KCl R KCl

Применение метода электропроводности для аналитических и физико-химических измерений (кондуктометрия).
Кондуктометрия – это совокупность физико-химических методов, основанных на измерении сопротивления изучаемых объектов, представляющих собой проводники второго рода. По значению сопротивления раствора электрическому току, протекающему между двумя электродами, погруженными в раствор, определяют электрическую проводимость. При помощи кондуктометрии можно определить концентрацию растворенного вещества, константу и степень диссоциации слабого электролита, растворимость и произведение растворимости труднорастворимых веществ, ионное произведение воды и другие физико-химические величины.

Кондуктометрическое определение степени и константы

диссоциации слабого электролита
Зависимость между молярной электрической проводимостью λ m и концентрацией слабого электролита может быть установлена с помощью закона разбавления Оствальда. Например, для равновалентных электролитов:

K д =

где K д – константа равновесия диссоциации слабого электролита,  – степень диссоциации, С – молярная концентрация электролита. Подставляя в это уравнение соотношение Аррениуса  = λ m / λ , получим:

K д =

Это выражение может быть использовано для определения константы диссоциации слабого электролита, если измерить электрическую проводимость раствора заданной концентрации. Значение λ можно получить из закона Кольрауша.

Кондуктометрическое титрование

Измерение электрической проводимости растворов широко применяют в титриметрическом анализе для определения точки эквивалентности (кондуктометрическое титрование). Метод кондуктометрического титрования основан на том, что в растворе, благодаря идущей в нем химической реакции, ионы, движущиеся с одной скоростью заменяются ионами, движущимися с другой скоростью. В методах кондуктометрического титрования измеряют электрическую проводимость раствора после добавления небольших определенных порций титранта и находят точку эквивалентности графическим методом с помощью кривой в координатах æ – V титранта. Практически в этом методе могут быть использованы такие химические реакции, в ходе которых достаточно заметно изменяется электрическая проводимость раствора или происходит резкое изменение электрической проводимости после точки эквивалентности (реакции кислотно-основного взаимодействия, осаждения и т.д.).

При титровании слабой кислоты сильным основанием (рис.5б) увеличивается электрическая проводимость раствора, что объясняется значительной диссоциацией образующейся соли по сравнению с диссоциацией исходного вещества (ветвь АВ):

CH 3 COOH + Na + + OH – = H 2 O + CH 3 COO – + Na +

После точки эквивалентности начинается резкий подъем электрической проводимости (ветвь ВС) т.к. в растворе будет нарастать концентрация ионов Na + и ОН – .

Кондуктометрическое титрование используют для определения концентрации окрашенных, мутных растворов, в которых изменение цвета индикатора маскируется, в том числе и в биологических жидкостях.

Основные вопросы темы

  1. Жидкости и ткани организма как проводники II рода.

  2. Абсолютная скорость движения ионов и факторы определяющие ее. Размерность. Абсолютная скорость движения Н + и ОН – . Подвижность ионов.

  3. Удельная электрическая проводимость и ее зависимость от абсолютной скорости движения ионов, от концентрации (разведения), температуры.

  4. Молярная электрическая проводимость, ее связь с удельной электрической проводимостью, зависимость от абсолютной скорости движения ионов и разведения (концентрации).

  5. Молярная электрическая проводимость при бесконечном разведении. Закон Кольрауша.

  6. Электрическая проводимость биологических жидкостей и тканей в норме и патологии.

  7. Кондуктометрия, кондуктометрическое определение степени и константы диссоциации слабых электролитов.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация