Метод упрощения вычисления средней арифметической называется методом условных моментов или методом отчета от условного нуля. Основные свойства средней величины

Главная / Налоги

Согласно этому методу средняя рассчитывается по следующей формуле.

x 0 – значение условного нуля

h – ширина интервала

m 1 – условный момент первого порядка

Расчет средней арифметической способом условных моментов применяется для расчета средних в интервальных вариационных рядах.

13. Показатели вариации. При изучении варьирующего признака у единиц совокупности нельзя ограничиваться лишь расчетом средней величины из отдельных вариантов, так как одна и та же средняя может относиться далеко не к одинаковым по составу совокупностям.

Вариацией признака называется различие индивидуальных значений признака внутри изучаемой совокупности.

Термин «вариация» произошел от латинского variatio – изменение, колеблемость, различие. Однако не всякие различия принято называть вариацией.

Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Колеблемость отдельных значений характеризуют показатели вариации. Чем больше вариация, тем дальше в среднем отдельные значения лежат друг от друга.

Различают вариацию признака в абсолютных и относительных величинах.

К абсолютным показателям относятся: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия. Все абсолютные показатели имеют ту же размерность, что и изучаемые величины.

К относительным показателям относятся коэффициенты осцилляции, линейного отклонения и вариации.

Показатели абсолютные. Рассчитаем абсолютные показатели, характеризующие вариацию признака.

Размах вариации, представляет собой разность между максимальным и минимальным значением признака.

R = Xmax – Xmin. (6.1)

Показатель размаха вариации не всегда применим, так как он учитывает только крайние значения признака, которые могут сильно отличаться от всех других единиц.

Более точно можно определить вариацию в ряду при помощи показателей, учитывающих отклонения всех вариантов от средней арифметической.

Таких показателей в статистике два: среднее линейное и среднее квадратическое отклонение.

Среднее линейное отклонение (L) представляет собой среднее арифметическое из абсолютных значений отклонений отдельных вариантов от средней.



Практическое использование среднего линейного отклонения заключается в следующем, с помощью этого показателя анализируется состав работающих, ритмичность производства, равномерность поставок материалов.

Недостаток этого показателя заключается в том, что он усложняет расчеты вероятного типа, затрудняет применение методов математической статистики.

Среднее квадратическое отклонение () является наиболее распространенным и общепринятым показателем вариации. Оно несколько больше среднего линейного отклонения. Для умеренно асимметричных распределений установлено следующее соотношение между ними

т.е. среднее квадратическое отклонение представляет собой корень квадратный из средней арифметической квадратов отклонений от средней.

Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше σ, тем лучше среднее арифметическое отражает собой всю представляемую совокупность.

Средняя арифметическая из квадратов отклонений вариантов значений признака от средней величины носит название дисперсии (), которая рассчитывается по формулам

Отличительной особенностью данного показатели является то, что при возведении в квадрат () удельный вес малых отклонений уменьшается, а больших увеличивается в общей сумме отклонений.

Дисперсия обладает рядом свойств, некоторые из них позволяют упростить её вычисление:

1. Дисперсия постоянной величины равна 0.

Если , то и .

Тогда .

2. Если все варианты значений признака (x) уменьшить на одно и то же число, то дисперсия не уменьшится.

Пусть , но тогда в соответствии со свойствами средней арифметической и .

Дисперсия в новом ряду будет равна

Т.е. дисперсия в ряду равна дисперсии первоначального ряда .

3. Если все варианты значений признака уменьшить в одно и то же число раз (k раз), то дисперсия уменьшится в k2 раз.

Пусть , тогда и .

Дисперсия же нового ряда будет равна

4. Дисперсия, рассчитанная по отношению к средней арифметической, является минимальной. Средний квадрат отклонений, рассчитанный относительно произвольного числа , больше дисперсии, рассчитанной по отношению к средней арифметической, на квадрат разности между средней арифметической и числом , т.е. . Дисперсия от средней имеет свойство минимальности, т.е. она всегда меньше дисперсий, исчисленных от любых других величин. В этом случае, когда приравниваем к 0 и, следовательно, не вычисляем отклонения, формула принимает такой вид:

(6.9)

Выше был рассмотрен расчет показателей вариации для количественных признаков, но в экономических расчетах может ставиться задача оценки вариации качественных признаков. Например, при изучении качества изготовленной продукции, продукцию можно разделить на качественную и бракованную.

В таком случае речь идет об альтернативных признаках.

Альтернативными признаками называются такие, которыми одни единицы совокупности обладают, а другие нет. Например, наличие производственного стажа у абитуриентов, ученая степень у преподавателей ВУЗов и т.д. Наличие признака у единиц совокупности условно обозначаем через 1, а отсутствие – 0. Тогда, если долю единиц, обладающих признаком (в общей численности единиц совокупности), обозначить через р, а долю единиц, не обладающих признаком, через q, дисперсию альтернативного признака можно рассчитать по общему правилу. При этом p + q = 1 и, значит, q = 1– p.

Сначала рассчитываем среднее значение альтернативного признака:

Рассчитаем среднее значение альтернативного признака

,

т.е. среднее значение альтернативного признака равно доле единиц, обладающих данным признаком.

Дисперсия же альтернативного признака будет равна:

Таким образом, дисперсия альтернативного признака равняется произведению доли единиц, обладающих данным признаком, на долю единиц, не обладающих данным признаком.

А среднее квадратическое отклонение будет равно = .

Показатели относительные. Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях представляют интерес показатели вариации, выраженные в относительных величинах. Базой для сравнения служит средняя арифметическая. Эти показатели вычисляются как отношение размаха вариации, среднего линейного отклонения или среднего квадратического отклонения к средней арифметической или медиане.

Чаще всего они выражаются в процентах и определяют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%. Различают следующие относительные показатели вариации:

1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.

3. Коэффициент вариации оценивает типичность средних величин.

. (6.12)

Чем меньше , тем однороднее совокупность по изучаемому признаку и типичнее средняя. Если ≤33%, то распределение близко к нормальному, а совокупность считается однородной. Из приведенного примера вторая совокупность однородна.

14. Изменение социально-экономических явлений во времени изучается статистикой методом построения и анализа динамических рядов.

Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности.

Каждый динамический ряд содержит две составляющие:

1) показатели периодов времени (годы, кварталы, месяцы, дни или даты);

2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда.

По времени различают моментные и интервальные ряды динамики .

В моментных рядах уровни выражают состояние явления на критический момент времени – начало месяца, квартала, года и т.д. Например, численность населения, численность работающих и т.д. В такихрядах каждый последующий уровень полностью или частично содержит значение предыдущего уровня, поэтому суммировать уровни нельзя, так как это приводит к повторному счету.

В интервальных – уровни отражают состояние явления за определенный период времени – сутки, месяц, год и т.д. Это ряды показателей объема производства, объема продаж по месяцам года, количества отработанных человеко-дней и т.д.

По форме представления уровней различают ряды абсолютных, относительных и средних величин .

Абсолютное изменение уровней - в данном случае его можно назвать абсолютным приростом - это разность между сравниваемым уровнем и уровнем более раннего периода, принятым за базу сравнения. Если эта база непосредственно предыдущий уровень, показатель называют цепным, если за базу взят, например, начальный уровень, показатель называют базисным. Формулы абсолютного изменения уровня:

Если абсолютное изменение отрицательно, его следует называть абсолютным сокращением.

Ускорение - это разность между абсолютным изменением за данный период и абсолютным изменением за предыдущий период одинаковой длительности:

Показатель абсолютного ускорения применяется только в цепном варианте, но не в базисном. Отрицательная величина ускорения говорит о замедлении роста или об ускорении снижения уровней ряда.

Коэффициент роста Ki определяется как отношение данного уровня к предыдущему или базисному, показывает относительную скорость изменения ряда. Если коэффициент роста выражается в процентах, то его называют темпом роста.

Коэффициент роста

базисный -

Или же темпом прироста.

Значения цепных темпов прироста, рассчитанных каждый к своей базе, различаются не только числом процентов, но и величиной абсолютного изменения, составляющей каждый процент. Поэтому складывать или вычитать цепные темпы прироста нельзя. Абсолютное значение 1% прироста равно сотой части предыдущего уровня, или базисного уровня.

В общем виде темп роста одной из альтернативных долей зависит от темпа роста другой доли и величины этой доли следующим образом:

Абсолютное изменение долей в пунктах зависит от величины доли и темпа роста таким образом:

При наличии в совокупности не двух, а более групп абсолютное изменение каждой из долей в пунктах зависит от доли этой группы в базисный период и от соотношения темпа роста абсолютной величины объемного признака этой группы со средним темпом роста объемного признака во всей совокупности. Доля f-й группы в сравниваемый (текущий) период определяется как

Средние показатели динамики - средний уровень ряда, средние абсолютные изменения и ускорения, средние темпы роста - характеризуют тенденцию.

Средний уровень интервального ряда динамики определяется как простая арифметическая средняя из уровней за равные промежутки времени:

или как взвешенная арифметическая средняя из уровней за неравные промежутки времени, длительность которых и является весами.

Особая форма средней арифметической величины, называемой хронологической средней:

Если известны точные даты изменения уровней моментного ряда то средний уровень определяется как

где ti - время, в течение которого сохранялся уровень.

Средний абсолютный прирост (абсолютное изменение) определяется как простая арифметическая средняя из абсолютных изменений за равные промежутки времени (цепных абсолютных изменений) или как частное от деления базисного абсолютного изменения на число осредняемых отрезков времени от базисного до сравниваемого периода:

Средний темп изменения определяется наиболее точно при аналитическом выравнивании динамического ряда по экспоненте. Если можно пренебречь колеблемостью, то средний темп определяют какгеометрическую среднюю из цепных темпов роста за п лет или из общего (базисного) темпа роста за п лет:

Средний коэффициент роста () рассчитывается по формуле средней геометрической из показателей коэффициентов роста за отдельные периоды:

где Кр1 , Кр2 , ..., Кр n-1 - коэффициенты роста по сравнению с предыдущим периодом; n - число уровней ряда.

Средний коэффициент роста можно определить иначе:

ОСНОВНЫЕ ПОКАЗАТЕЛИ РЯДОВ ДИНАМИКИ
При изучении динамики используются различные показатели и методы анализа, как элементарные, более простые, так и более сложные, требующие соответственно применения более сложных разделов математики. Простейшими показателями анализа, которые используются при решении ряда задач, в первую очередь при измерении скорости изменения уровня ряда динамики, являются абсолютный прирост, темпы роста и прироста, а также абсолютное значение (содержание) одного процента прироста. Расчет этих показателей основан на сравнении между собой уровней ряда динамики. При этом уровень, с которым производится сравнение, называется базисным, так как он является базой сравнения. Обычно за базу сравнения принимается либо предыдущий, либо какой-либо предшествующий уровень, например первый уровень ряда. Если каждый уровень сравнивается с предыдущим, то полученные при этом показатели называются цепными, так как они представляют собой как бы звенья «цепи», связывающей между собой уровни ряда. Если же все уровни связываются с одним и тем же уровнем, выступающим как постоянная база сравнения, то полученные при этом показатели называются базисными. Часто построение ряда динамики начинают с того уровня, который будет использован в качестве постоянной базы сравнения. Выбор этой базы должен быть обоснован историческими и социально-экономическими особенностями развития изучаемого явления. В качестве базисного целесообразно брать какой-либо характерный, типичный уровень, например конечный уровень предыдущего этапа развития (или средний его уровень, если на предыдущем этапе уровень то повышался, то понижался). Абсолютныш прирост показывает, на сколько единиц увеличился (или уменьшился) уровень по сравнению с базисным, т. е. за тот или иной промежуток (период) времени. Абсолютный прирост равен разности между сравниваемыми уровнями и измеряется в тех же единицах, что и эти уровни: ? =yi?yi?1; ? =yi ?y0 , где уi – уровень i-го года; yi-1 – уровень предшествующего года; y0 – уровень базисного года. Если уровень уменьшился по сравнению с базисным, то ? ‹ 0; он характеризует абсолютное уменьшение уровня. Абсолютный прирост за единицу времени (месяц, год) измеряет абсолютную скорость роста (или снижения) уровня. Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных приростов равна соответствующему базисному приросту, т. е. общему приросту за весь период. Более полную характеристику роста можно получить только тогда, когда абсолютные величины дополняются относительными. Относительными показателями динамики являются темпы роста и темпы прироста, характеризующие интенсивность процесса роста. Темп роста (Тр) – статистический показатель, который отражает интенсивность изменения уровней ряда динамики и показывает, во сколько раз увеличился уровень по сравнению с базисным, а в случае уменьшения – какую часть базисного уровня составляет сравниваемый уровень; измеряется отношением текущего уровня к предыдущему или базисному: Как и другие относительные величины, темп роста может быть выражен не только в форме коэффициента (простого отношения уровней), но и в процентах. Как и абсолютные приросты, темпы роста для любых рядов динамики сами по себе являются интервальными показателями, т. е. характеризуют тот или иной промежуток (интервал) времени. Между цепными и базисными темпами роста, выраженными в форме коэффициентов, существует определенная взаимосвязь: произведение последовательных цепных темпов роста равно базисному темпу роста за весь соответствующий период, например: y2/ y1 y3/ y2 = y3/ y1 . Темп прироста (Тпр) характеризует относительную величину прироста, т. е. представляет собой отношение абсолютного прироста к предыдущему или базисному уровню: Темп прироста, выраженный в процентах, показывает, на сколько процентов увеличился (или уменьшился) уровень по сравнению с базисным, принятым за 100 %. При анализе темпов развития никогда не следует упускать из виду, какие абсолютные величины – уровни и абсолютные приросты – скрываются за темпами роста и прироста. Нужно, в частности, иметь в виду, что при снижении (замедлении) темпов роста и прироста абсолютный прирост может возрастать. В связи с этим важно изучать еще один показатель динамики – абсолютное значение (содержание) 1 % прироста, который определяется как результат деления абсолютного прироста на соответствующий темп прироста: Эта величина показывает, сколько в абсолютном выражении дает каждый процент прироста. Иногда уровни явления за одни годы несопоставимы с уровнями за другие годы из-за территориальных, ведомственных и иных изменений (изменения методологии учета и исчисления показателей и т. п.). Чтобы обеспечить сопоставимость и получить пригодный для анализа временной ряд, нужно произвести прямой пересчет уровней, несопоставимых с другими. Однако иногда нет необходимых для этого данных. В таких случаях можно использовать особый прием, называемый смыканием рядов динамики. Пусть, например, произошло изменение границ территории, по которой изучалась динамика развития какого-то явления в i-м году. Тогда данные, полученные до этого года, окажутся несопоставимы с данными за последующие годы. Чтобы сомкнуть эти ряды и получить возможность анализа динамики ряда за весь период, примем в каждом из них за базу сравнения уровень i-го года, за который есть данные как в прежних, так и в новых границах территории. Эти два ряда с одинаковой базой сравнения можно затем заменить одним сомкнутым рядом динамики. По данным сомкнутого ряда можно вычислить темпы роста по сравнению с любым годом, можно рассчитать и абсолютные уровни за весь период в новых границах. Тем не менее надо иметь в виду, что результаты, полученные путем смыкания рядов динамики, содержат в себе некоторую погрешность. Графически динамика явлений наиболее часто изображается в виде столбиковых и линейных диаграмм. Применяются и другие формы диаграмм: фигурные, квадратные, секторные и т. п. Аналитические графики обычно строятся в виде линейных диаграмм.

16. Экономические и хозяйственные процессы в предприятии находятся в непрерывном развитии. Их изменение во времени можно изучить при помощи построения и анализа рядов динамики.

Ряд динамики – числовые значения показателя, представленные во временной последовательности. Он состоит из двух граф: в первой указываются периоды (или даты), во второй – показатели, характеризующие изучаемый объект за эти периоды (или на эти даты).

В связи с этим ряды динамики могут быть двух видов: интервальные (данные о годовом надое молока за ряд лет) и моментные (данные о стоимости основных средств предприятия на начало года).

Для изучения интенсивности изменения уровней ряда во времени исчисляются следующие показатели динамики.

Представленные показатели динамики можно исчислять с переменной или постоянной базой. Если производится сравнение каждого уровня с предыдущим уровнем, то получаются показатели динамики с переменной базой (цепные показатели динамики). Если каждый уровень сравнивается с начальным уровнем, то получаются показатели динамики с постоянной базой (базисные показатели динамики).

Абсолютный прирост показывает, на сколько в абсолютном выражении (руб., га, чел., ц) уровень текущего периода больше (меньше) базисного.

Коэффициент роста показывает, во сколько раз уровень текущего периода больше (или меньше) базисного.

Темп роста – это коэффициент роста, выраженный в процентах; показывает сколько процентов уровень текущего периода составляет по отношению к уровню базисного периода.

Темп прироста – показывает, на сколько процентов уровень текущего периода больше (+), или меньше (-) уровня базисного периода.

Абсолютное значение 1% прироста показывает, какая абсолютная величина скрывается за относительным показателем – одним процентом прироста.

Методы расчета показателей динамики представлены в таблице 1, они одинаковы для моментных и для интервальных рядов.

Таблица 1 – Показатели динамики

Показатель Метод расчета
с переменной базой (цепные) с постоянной базой (базисные)
1. Абсолютный прирост (Δ)
2. Коэффициент роста (К Р )
3. Темп роста (Т Р ), %
4. Темп прироста (Т П ), %
5. Абсолютное значение 1% прироста (А )

где: у i – уровень любого периода (кроме первого), называемый уровнем текущего периода;

у i-1 – уровень периода, предшествующего текущему;

у k – уровень, принятый за постоянную базу сравнения (часто начальный уровень).

17-21. 1. Понятие индексов, классификация индексов

Индексы относятся к важнейшим обобщающим показателям. Слово «индекс» в переводе означает показатель, указатель. Оно используется как понятие в математике, экономике, в метрологии и др. науках.

Статистический индекс - это относительная величина, используемая для сравнения сложных совокупностей и отдельных их единиц во времени пространстве или по сравнению с эталоном. При этом под сложной понимается такая статистическая совокупность, отдельные элементы которой непосредственно не подлежат суммированию. Например, данные о количестве произведенных и реализованных различных видов продовольственных или непродовольственных товаров в натуральном выражении. Бессмысленно для получения общего объема реализации суммировать, например, данные о продаже тканей (в метрах), костюмов (в штуках), обуви (в парах) и т.д.

Основой индексного метода при определении изменений, например, в производстве и обращении товаров является переход от натурально-вещественной формы выражения товарных масс к стоимостным, трудовым или затратным измерителям. Поскольку не смотря на различия потребительных стоимостей отдельных товаров, все они являются результатом труда и поэтому могут быть выражены общей мерой через стоимость, трудовые затраты и издержки производства.

Все индексы можно классифицировать по следующим признакам: по охвату явлений (элементов совокупности) они делятся на индивидуальные и общие, по содержанию индексируемых величин - объемные и качественные, по форме построения - на агрегатные и средние из индивидуальных (среднеарифметические взвешенные и среднегармонические взвешенные), по базе сравнения - динамические (цепные, базисные) и территориальные, по применяемым весам - с постоянными весами, с переменными весами, по составу - индексы переменного состава и индексы постоянного состава, по периодам исчисления - годовые, квартальные, месячные, недельные.

2. Индивидуальные и общие индексы

Введем обозначения:

i - индивидуальные (простые, одинарные) индексы;

I - сводные общие индексы.

Буквы для обозначения признаков могут быть любыми, но чаще всего обозначают:

р - цена единицы продукции;

z - себестоимость единицы продукции;

q - физический объем продукции произведенной, проданной и потребленной;

f - заработная плата;

w - производительность труда (средняя выработка);

t - трудоемкость изготовления единицы продукции;

Т - общие затраты труда (tq), (человеко-часов, человеко-дней, человек);

Z - общие издержки производства (zq) на продукцию данного вида;

Р - общая стоимость произведенной продукции (pq) данного вида.

Отчетные данные (которые сравнивают) в статистике обозначают подстрочным значком «1», базисные (с которыми сравнивают) - «О». В качестве баз в индексных отношениях могут выступать плановые данные, данные за предшествующие периоды, данные по другим аналогичным объектам.

Индивидуальные индексы служат для характеристики изменения отдельных элементов сложной совокупности, представляют собой относительные величины динамики, выполнения плана, сравнения. Их расчет не требует знания специальных правил. Они вычисляются просто как темпы роста. Если требуется, например, показать по каждому товару динамику цены или объема, то берут соответствующую величину отчетного периода и делят на величину базисного периода.

Индивидуальный индекс физического объема

Индивидуальный индекс цены

Индивидуальный индекс товарооборота

Общие индексы отражают изменения, служат для характеристики изменения всех элементов сложного явления. Если индексы охватывают часть элементов сложного явления, то их называют групповыми или субиндексами .

Важной особенностью общих индексов является то, что они обладают синтетическими и аналитическими свойствами. Синтетические свойства индексов состоят в том, что посредством индексного метода производится соединение (агрегирование) в целое единиц статистической совокупности. Аналитические свойства индексов состоят в том, что посредством индексного метода определяется влияние факторов на изменение изучаемого показателя. На основе изучения состава и роли факторов, выявления силы их действия, осуществляются возможности квалифицированного управления развитием экономических процессов не только в нужном направлении, но и с заранее заданными параметрами.

Пример 1. Имеются следующие данные (гр. 1-5)

Товары Базисный период Отчетный период Индивидуальные индексы Товарооборот, тыс. руб. Индивидуальный индекс товарооборота
Кол-во товаров, тыс. шт., Цена единицы, руб. Кол-во товаров, тыс. шт., Цена единицы, руб. Цены Количества Базисный период Отчетный период
А В 20/6= =3,333 30/15==2,000 50/40==1,25 600/500= =1,2 40х6= =240 500х15= =7500 50х20= 600х30= =18000 1000/240=4,167 18000/7500=2,4
Х Х Х Х Х Х ∑p 0 q 0 =7740 ∑p 1 q 1 =19000 Х

Определить индивидуальные индексы (i p , i q , i pq) общие индексы ( , J p , J pq).

1. Величины индивидуальных индексов см. гр.6,7,10. Выражаются индексы в коэффициентах или в виде процентов.

В статистике часто приходится иметь дело с такими показателями, которые связаны между собой, как сомножители связаны с произведением. Например, товарооборот равен произведению цены на физический объем товарооборота. Связь между индивидуальными индексами в таких случаях, такая же, как между соответствующими показателями:


Такая взаимосвязь дает возможность по двум имеющимся индексам находить третий. Такие индексы называются сопряженными и образуют систему взаимосвязанных индексов.

Индивидуальный индекс товарооборота в данном случае можно определить двумя способами (см. гр. 10):

Общие индексы можно определить тремя способами: 1) по агрегатной формуле; 2) по формуле средневзвешенного индекса и 3) на основе взаимосвязи индексов. В зависимости от цели исследования используют ту или иную форму построения.

3. Агрегатные индексы

Агрегатный индекс характеризует среднее изменение сложного явленная. Латинское слово «агрегат» (aggregatus) означает «складываемый», суммируемый. Особенность этой формы индекса состоит в том, что в агрегатной форме сравниваются две суммы одноименных показателей. Числитель и знаменатель агрегатного индекса представляют собой сумму произведений двух величин, одна из которых меняется (индексируемая величина), а другая остается неизменной в числителе и знаменателе (вес индекса). Индексируемой величиной называется признак, изменение которого изучается. Вес индекса - это величина, служащая для целей соизмерения индексируемых величин.

Каждый экономический индекс решает определенную задачу. Экономическое содержание индекса предопределяет методику его расчета. Методика построения агрегатного индекса предусматривает решение трех вопросов:

1. Какая величина будет индексируемой;

2. По какому составу разнородных элементов явления необходимо исчислить индекс;

3. Что будет служить весом при расчете индекса.

При выборе веса индекса принято руководствоваться правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода. Количественные (объемные) индексы характеризуют изменение экстенсивных факторов, например, всевозможных количеств. К ним относятся все индексы физического объема: физического объема товарооборота, ВВП, объема продаж валюты и др.

Качественные индексы - это индексы цен, себестоимости, производительности труда, курса валют и др. Индексируемые величины этих индексов - качественные (интенсивные) показатели, характеризующие уровень явления в расчете на единицу совокупности (цена единицы продукции, себестоимость единицы продукции др.).

Построим три агрегатных индекса: индекс товарооборота, индекс цены и индекс физического объема товарооборота.

Товарооборот отчетного периода в отчетных ценах

Товарооборот базисного периода в базисных ценах

, 245,5%

это значит, что товарооборот вырос в среднем в 2,455 раза, что в абсолютном выражении составит


Тыс. руб.

Аналогично рассчитываются индексы стоимости произведенной продукции, стоимости потребленной продукции и др.

Из этой формулы общего индекса товарооборота видно, что его величина зависит от изменения двух факторов:

Физического объема товарооборота (количества проданных товаров),

Р цены за каждую единицу реализованных товаров.

Чтобы выявить влияние каждой переменной в отдельности следует исключить влияние одной их них, то есть принять ее условно в качестве постоянной величины на уровне отчетного или базисного периодов.

Общее изменение цен можно определить при условии, что в качестве постоянной величины (весов) взято количество проданных товаров за отчетный или базисный периоды.

Товарооборот отчетного периода в базисных ценах

Это агрегатный индекс Г.Пааше (по имени немецкого ученого предложившего этот индекс).

Индекс Пааше показывает, как изменился уровень цен на товарную массу, которую население купило в отчетном периоде и каков выигрыш (потери) населения от снижения (повышения) цен на товары. В примере 1


Это значит, что цены в среднем по двум товарам выросли в отчетном периоде по сравнению с базисным в 2,043 раза и потери, которые несет население от роста цен составляют:

Тыс. руб.

Можно также сказать, что товарооборот вырос вследствие среднего роста цен на 9700 тыс. руб. в отчетном периоде по сравнению с базисным. Можно определить индекс цен и по формуле Ласпейреса, если веса (количество товаров) взяты в базисном периоде.

Индекс Э. Ласпейреса, показывает, как в среднем изменились цены на товары, проданные в базисном периоде. Разность между числителем и знаменателем этого индекса дает представление об условном изменении объема товарооборота при продаже в предстоящем периоде такого же количества товаров, что в базисном, но по новым ценам

Этот индекс применяют при прогнозировании изменения объема товарооборота в связи с намечаемыми изменениями цен на товары в предстоящем периоде.

Идеальный индекс Фишера - средняя геометрическая из произведения двух агрегатных индексов Ласпейреса и Паше


Агрегатный индекс физического объема товарооборота должен отражать изменение физического объема в отчетном периоде по сравнению с базисным, и поэтому при его построении в качестве весов берутся цены отчетного периода или сопоставимые (базисные) цены.

Товарооборот базисного периода в сопоставимых (базисных) ценах

Это индекс Ласпейреса

В примере 1

120,2%.

Это значит, что в отчетном периоде по сравнению с базисным физический объем товарооборота увеличился в среднем на 20,2%, что в абсолютном выражении составило:

Тыс. руб.

Это значит, что в отчетном периоде по сравнению с базисным товарооборот вследствие изменения только объемов проданных товаров вырос в среднем на 1560 тыс. руб.

Можно определить I q и по формуле Пааше


Взаимосвязь общих индексов. Взаимосвязь между общими индексами такая же как между соответствующими показателями не всегда, а лишь в том случае, когда предположения об изменении весов сопоставимы. Например,

Если 2 фактора, то

11260=9700 + 1560

Если более 2-х факторов, то схема следующая:

1. Сначала выбираем очередность изменения факторов, учитывая, что качественные индексы строятся на весах отчетного периода, а объемные – на весах базисного периода.

3. Вычисляем 2-ой индекс в предположении, что после изменения 1-го фактора меняется 2-й.

4. Вычисляем 3-й индекс в предположении, что после изменения первых двух факторов меняется третий и т.д.


Системы агрегатных индексов

Уравнение связи Качественные индексы Объемные индексы Индексы результативной величины Системы взаимосвязанных индексов

4. Средневзвешенные индексы

Средневзвешенные индексы исчисляются тогда, когда имеющаяся в распоряжении информация не позволяет рассчитывать общий агрегатный индекс.

В статистической практике средние индексы рассчитываются преимущественно в форме среднего арифметического и среднего гармонического индексов:

где - индивидуальные индексы изучаемого показателя (индексируемой величины);

Веса соответственно в среднем арифметическом и среднем гармоническом индексах.

Средняя арифметическая обладает некоторыми свойствами, которые определяют ее широкое применение в экономических расчетах и в практике статистического исследования.

Свойство 1. Средняя арифметическая постоянной величины равна этой постоянной:

Свойство 2 (нулевое). Алгебраическая сумма линейных отклонений (разностей) индивидуальных значений признака от средней арифметической равна нулю:

для первичного ряда и для сгруппированных данных (d i - линейные (индивидуальные) отклонения от средней, т.е. x i - ).

Это свойство можно сформулировать следующим образом: сумма положительных отклонений от средней равна сумме отрицательных отклонений.

Логически оно означает, что все отклонения от средней в ту и в другую сторону, обусловленные случайными причинами, взаимно погашаются.

Свойство 3 (минимальное). Сумма квадратов отклонений индивидуальных значений признака от средней арифметической есть число минимальное:

что означает: сумма квадратов отклонений индивидуальных значений признака каждой единицы совокупности от средней арифметической всегда меньше суммы квадратов отклонений вариантов признака от любого значения (А), сколь угодно мало отличающегося от средней у выбранной единицы исследуемой совокупности.

Для сгруппированных данных имеем:

Минимальное и нулевое свойства средней арифметической применяются для проверки правильности расчета среднего уровня признака; при изучении закономерностей изменения уровней ряда динамики; для нахождения параметров уравнения регрессии при изучении корреляционной связи между признаками.

Рассмотренные свойства выражают сущностные черты средней арифметической. Существуют также расчетные (вычислительные) свойства средней арифметической, имеющие прикладное значение:

  • если значения признака каждой единицы совокупности (все усредняемые варианты) уменьшить или увеличить на одну и ту же величину А, то и со средней арифметической произойдут аналогичные изменения;
  • если значения признака каждой единицы совокупности разделить или умножить на какое-либо постоянное число А, то средняя арифметическая уменьшится или увеличится в А раз;
  • если вес (частоту) каждого значения признака разделить на какое-либо постоянное число А, то средняя арифметическая не изменится.

В настоящее время вычислительные свойства средней арифметической потеряли свою актуальность в связи с использованием ЭВМ при расчете обобщающих статистических показателей.



18.Упрощенный способ расчета средней арифметической .

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом. В этом случае используются свойства средней величины. Метод упрощенного расчета называется способом моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия :

1) Если возможно, то уменьшаются веса.

2) Выбирается начало отсчета – условный нуль. Обычно выбирается с таким расчетом, чтобы выбранное значение признака было как можно ближе к середине распределения. Если распределение по своей форме близко к нормальному, но за начало отсчета выбирают признак, обладающий наибольшим весом.

3) Находятся отклонения вариантов от условного нуля.

4) Если эти отклонения содержат общий множитель, то рассчитанные отклонения делятся на этот множитель.

5) Находится среднее значение признака по следующей формуле

Пример :


до 70 -30 -3 -45
70-80 -20 -2 -34
80-90 -10 -1 -13
90-100
100-110
110-120
120-130
130-140
140 и более
Сумма -12

▲ 19 Мода и медиана и их использование в статистике.

Модой распределения называется такая величина изучаемого признака, которая в данной совокупности встречается наиболее часто, т.е. один из вариантов признака повторяется чаще, чем все другие. Мода - значение варьирующего признака, имеющего наибольшую частоту. Мода в интервальном ряду распределения с равными интервалами.
Mo=xMo+iMo*(fMo-f(Mo-1))/((fMo-f(Mo-1))+(fMo-f(Mo-1)) Мода в интервальном ряду с неравными интервалами.
100-120 10 0,5
120-140 30 1,5 <- Mo (мода)
140-180 40 1
180-220 20 0,5
Всего: 100
Для упорядоченного дискретного ряда распределения мода, являющаяся характеристикой вариационного ряда, определяется по частотам вариантов и соответствует варианту с наибольшей частотой.
Медиана – значение варьирующегося признака у той единицы совокупности, которая находится в середине рентированного ряда.
Медиана в дискретном ряду: 23 28 30 35 37 (30 медиана)
Медиана в интервальном ряду распределения: Me = xMe+iMe*(суммаf/2-fиск)/fиск
В дискретном ряду распределения мода определяется визуально. Главное свойство медианы в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины. Квартили представляют собой значение признака, делящее ранжированную совокупность на четыре равновеликие части. Вычисление квартилей аналогично вычислению медианы. Децили – это значение вариант, которые делят ранжированный ряд на десять равных частей: 1-й дециль делит совокупность в соотношении 1/10 к 9/10, 2-й дециль – в соотношении 2/10 к 8/10 и т. д. вычисляются децили по той же схеме, что и медиана, и квартили.

▲ 20 Причины, порождающие вариацию признаков, изучаемых статистикой. Необходимость изучения вариации.

18 Причины, порождающие вариацию признаков, изучаемых статистикой. Необходимость изучения вариации.
При изучении явлений и процессов общественной жизни статистика встречается с разнообразной вариацией (изменчивостью) признаков, характеризующих отдельные единицы совокупности. Величины признаков изменяются под действием различных факторов. Очевидно, что чем разнообразнее условия, влияющие на размер данного признака, тем больше его вариация. Например, размер заработной платы рабочих зависит от нескольких факторов: специальности, разряда, стажа работы, образования, состояния здоровья и т.д. Чем больше различия между значениями факторов, тем больше вариация в уровне заработной платы.
При характеристике колеблемости признака используют систему абсолютных и относительных показателей.
При изучении явлений и процессов общественной жизни статистика встречается с разнообразной вариацией (изменчивостью) признаков, характеризующих отдельные единицы совокупности.
Вариация - это различие в значениях, какого - либо признака у разных единиц данной совокупности в один и тот же момент времени. Величины признаков изменяются под действием различных факторов. И, следовательно, чем разнообразнее условия, влияющие на размер данного признака, тем больше его вариация. Исследование вариации в статистике имеет большое значение, т. к. помогает изучить сущность явления. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (продолжительность жизни, доходы и расходы населения и т. д.) для принятия научно-обоснованных управленческих решений.

▲ 21 Показатели вариации абсолютные и относительные, общие, внутригрупповые и межгрупповые, их смысл и значение. Правило сложения дисперсий.

(122.51 КБ) Скачиваний: 0

▲ 22 Среднелинейное отклонение, средний квадрат отклонения (дисперсия), средвнеквадратическое отклонение, коэффициент вариаций.

23. Математические свойства дисперсии. Упрощенные способы расчета дисперсии

Дисперсия представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины и вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных):

среднее квадратическое отклонение (σ):

(простое среднеквадратическое отклонение),

(взвешенное среднеквадратическое отклонение).

Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности. Оно выражается в тех же единицах, что и признак.

Расчет дисперсии может быть упрощен. В случае равных интервалов в вариационном ряду распределения используется способ отсчета от условного нуля (способ моментов). Для его понимания необходимо знать следующие свойства дисперсии :
Свойство 1 . Дисперсия постоянной величины равна нулю.
Свойство 2 . Уменьшение всех значений признака на одну и ту же величину A не меняет величины дисперсии . Значит, средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-либо постоянного числа.
Свойство 3 . Уменьшение всех значений признака в K раз уменьшает дисперсию в K 2 раз, а среднее квадратическое отклонение в K раз . Значит, все значения признака можно разделить на какое-то постоянное число, например, на величину интервала ряда, исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число: .
Свойство 4 . Если вычислить средний квадрат отклонений от любой величины A, в той или иной степени отличающейся от средней арифметической (), то он всегда будет больше среднего квадрата отклонений, вычисленного от средней арифметической . Средний квадрат отклонений при этом будет больше на величину (– A) 2:
.
Значит, дисперсия от средней величины всегда меньше дисперсий, вычисленных от любых других величин, т.е. она имеет свойство минимальности.
На этих математических свойствах дисперсии основываются способы, которые позволяют упростить ее вычисление. Например, расчет дисперсии по способу моментов или способу отсчета от условного нуля применяется в вариационных рядах с равными интервалами. Расчет производится по формуле:

,
где K – ширина интервала;
A – условный нуль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
– момент второго порядка.
Между средним линейным и средним квадратическим отклонениями существует примерное соотношение если фактическое распределение близко к нормальному.
В условиях нормального распределения существует следующая зависимость между величиной среднего квадратического отклонения и количеством наблюдений:
1) в пределах ± 1σ располагается 68,3 % количества наблюдений;
2) в пределах ± 2σ – 95,4 %;
3) в пределах ± 3σ – 99,7 %;
В действительности, на практике почти не встречаются отклонения, которые превышают ±3σ. Отклонение 3σ может считаться максимально возможным. Это положение называют «правилом трех сигм».

▲ 24 Дисперсия альтернативного признака.

21 Дисперсия альтернативного признака.
Альтернативный признак – это признак, характеризующий обладание или не обладание чем-то (см.п.1.2.).
В статистике при изучении вариации альтернативных признаков наличия изучаемого признака обозначаются «1», а его отсутствие – «0».
Доля единиц совокупности, обладающих изучаемым признаком – «p” , а не обладающих им “q”, следовательно, p + q = 1
Дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы число. Корень квадратный из этого показателя соответствует среднему квадратическому отклонению альтернативного признака.
Показатели вариации альтернативных признаков широко используются в статистике, в частности при проектировании выборочного наблюдения, обработке данных социологических обследований, статистическом контроле качества продукции, в ряде других случаев.

▲ 25 Выборочное наблюдение, значение и условия применения.

22 Выборочное наблюдение, значение и условия применения.
статистическое наблюдение, при котором исследованию подвергают не все элементы изучаемой совокупности (называемой при этом «генеральной»), а только некоторую, определённым образом отобранную их часть. Отобранная часть элементов совокупности (выборка) будет представлять всю совокупность с приемлемой точностью при двух условиях: она должна быть достаточно многочисленной, чтобы в ней могли проявиться закономерности, существующие в генеральной совокупности; элементы выборки должны быть отобраны объективно, независимо от воли исследователя, так чтобы каждый из них имел одинаковые шансы быть отобранным или же чтобы шансы эти были известны исследователю. Эти условия устанавливаются математической теорией выборочного метода. Она основана на ряде важнейших теорем теории вероятностей, составляющих так называемый закон больших чисел (см. Больших чисел закон). Лишь при соблюдении этих условий возникает объективная возможность оценить точность Выборочное наблюдение на основании самих выборочных данных. Точность Выборочное наблюдение измеряется с помощью средней ошибки выборки, величина которой прямо пропорциональна степени вариации изучаемых признаков и обратно пропорциональна объёму выборки. Выборочное наблюдение можно произвести быстрее сплошного, с меньшими затратами и получить результаты, по точности мало уступающие результатам сплошного наблюдения, а с учётом же возможности более тщательного наблюдения - даже нередко превосходящие их.

▲ 26 Ошибки выборочного наблюдения.

23 Ошибки выборочного наблюдения.
Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называют ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака слагается из ошибок регистрации и ошибок репрезентативности. Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т. п.
Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и предполагаемой характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими.
Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности
. В результате первой причины выборка легко может оказаться смещенной, так как при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, представляя собой постоянную часть ошибки репрезентативности, она увеличивается с увеличением объема выборки. Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда, как размер ошибки смещения непосредственно практически определить очень сложно, а иногда и невозможно. Поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.

▲ 27 Методы определения ошибки выборки для средней и для частости, при различных способах и методах отбора.

24 Методы определения ошибки выборки для средней и для частости, при различных способах и методах отбора.
-Отклонение результатов, полученных с помощью выборочного наблюдения от истинных данных генеральной совокупности.
Ошибка выборки бывает двух видов – статистическая и систематическая. Статистическая ошибка зависит от размера выборки. Чем больше размер выборки, тем она ниже.

▲ 28 Определение численности выборки.

25 Определение численности выборки.
Определение необходимого объема выборки – это важная задача, с которой сталкивается исследователь, организующий выборочное наблюдение.
При этом ему, как правило, известно: какие характеристики генеральной совокупности он хотел бы оценить, какую величину ошибки он считал бы несущественной, какой метод выбора данных он использует. Известно также расположение генеральной совокупности и часто (но не всегда) количество элементов в ней.
Расчет численности выборки основывается на статистическом подходе обработки данных и за ним стоит множество вычислений, но для простоты, ниже мы представим формулу, следуя которой можно достичь хороших результатов.

Вариационные ряды распределения состоят их двух элементов вариантов и частот.

Вариантами называются числовые значения колличественного признака в ряду распределения, они могут быть положительными и отрицательными, абсолютными и относительными. Частоты – это численности отдельных вариантов или каждой группы вариационного ряда. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности.

Ряды распр-я могут быть образованы по качественному(атрибутивному) и колич-му пр-ку. В первом случае они наз. атрибутивными,а во втором- вариационными.

Вариационные ряды распр-ия по сп-бу постр-ия бывают дискретные и интервальные:

Дискр. вариац. ряд распр-я - группы сост-ны по признаку, изменяющемуся дискретно и приним-му только целые значения. Интервальный вариац. ряд распр-ия - группировачный признак, сост-ий групп-ки, может принимать в опред-ом интервале любые знач-ия. Число ед-ц частоты, приходящиеся на ед-цу инт-ла наз. плотностью распред-я . Ряд накопл-ых частот (кумулятивный)-показ-т число случаев ниже или выше опред-го уровня. Графич изображения ряда распред.: линейные, плоскостные диаграммы, гистограммы, куммулятивная кривая (изображ-ет ряд накопл-х частот)

9. Средняя арифметическая взвешенная.

При расчете средних величин отдельные значения признака, который осредняется, могут повторяться, поэтому расчет средней величины производится по сгруппированным данным. В этом случае речь идет об использовании средней арифметической взвешенной, которая имеет вид: X средн = (EXi*fi)/ Efi

При расчете средней по интервальному вариационному ряду для выполнения необходимых вычислений от интервалов переходят к их серединам.

Расчет средней по способу моментов. Основан на свойствах средней арифметической. В качестве условного ноля – X0 выбирают середину одного из центральных интервалов, обладающего наибольшей частотой.Этот способ используется только в рядах с равными интервалами.

10. Средняя гармоническая простая и взвеш.

Средняя гармоническая. Эту среднюю называют обратной средней арифметической, поскольку эта величина используется при k = -1. Простая средняя гармоническая используется тогда, когда веса значений признака одинаковы. Ее формулу можно вывести из базовой формулы, подставив k = -1:

К примеру, нам нужно вычислить среднюю скорость двух автомашин, прошедших один и тот же путь, но с разной скоростью: первая - со скоростью 100 км/ч, вторая - 90 км/ч. Применяя метод средней гармонической, мы вычисляем среднюю скорость:

В статист практике чаще исп гармонич взвеш , формула кот имеет вид:

Данная формула используется в тех случаях, когда веса (или объемы явлений) по каждому признаку не равны. В исходном соотношении для расчета средней известен числитель, но неизвестен знаменатель.

Например, при расчете средней цены мы должны пользоваться отношением суммы реализации к количеству реализованных единиц. Нам не известно количество реализованных единиц (речь идет о разных товарах), но известны суммы реализаций этих различных товаров. Допустим, необходимо узнать среднюю цену реализованных товаров: Вид товара Цена за единицу, руб.Сумма реализаций, руб.

Получаем

Если здесь использовать формулу средней арифметической, то можно получить среднюю цену, которая будет нереальна:

11. Упрощенный расчет средней арифм. (ср. ар.) (способ моментов).

Пользуясь св-ми ср. ар., ее можно рассчитать след. образом: 1) вычесть из всех вариант постоянное число (лучше значение серединной варианты); 2) разделить варианты на постоянное число – на величину интервала; 3) частоты выразить в %. Вычисление ср. ар. первыми двумя способами называется способом отсчета от условного начала (способом моментов). Этот способ применяется в рядах с разными интервалами. Ср. ар. в этом случае опред. по ф-ле:

Где m – момент первого порядка; х 0 – начало отсчета; К – величина интервала.

12. Мода и медиана.

Для определения структуры совокупности используют особые средние показатели, к которым относятся медиана и мода, или так называемые структурные средние. Медиана (Ме) - это величина, которая соответствует варианту, находящемуся в середине ранжированного ряда. Для ранжированного ряда с нечетным числом индивидуальных величин (например, 1, 2, 3, 3, 6, 7, 9, 9, 10) медианой будет величина, которая расположена в центре ряда, т.е. пятая величина. Для ранжированного ряда с четным числом индивидуальных величин (например, 1, 5, 7, 10, 11, 14) медианой будет средняя арифметическая величина, которая рассчитывается из двух смежных величин. Для нашего случая медиана равна (7+10) : 2= 8,5. То есть для нахождения медианы сначала необходимо определить ее порядковый номер (ее положение в ранжированном ряду) по формуле Nme=(n+1)/2, где n - число единиц в совокупности. Численное значение медианы определяют по накопленным частотам в дискретном вариационном ряду. Для этого сначала следует указать интервал нахождения медианы в интервальном ряду распределения. Медианным называют первый интервал, где сумма накопленных частот превышает половину наблюдений от общего числа всех наблюдений. Численное значение медианы обычно определяют по формуле----- где xМе - нижняя граница медианного интервала; i - величина интервала; S-1 - накопленная частота интервала, которая предшествует медианному; f - частота медианного интервала.

Модой (Мо) называют значение признака, которое встречается наиболее часто у единиц совокупности. Для дискретного ряда модой будет являться вариант с наибольшей частотой. Для определения моды интервального ряда сначала определяют модальный интервал (интервал, имеющий наибольшую частоту). Затем в пределах этого интервала находят то значение признака, которое может являться модой. Чтобы найти конкретное значение моды, необходимо использовать формулу

где xМо - нижняя граница модального интервала; iМо - величина модального интервала; fМо - частота модального интервала; fМо-1 - частота интервала, предшествующего модальному; fМо+1 - частота интервала, следующего за модальным.

Мода имеет широкое распространение в маркетинговой деятельности при изучении покупательского спроса, особенно при определении пользующихся наибольшим спросом размеров одежды и обуви, при регулировании ценовой политики.

13. Свойства средней ариф. (ср. ар.)

1.Если из всех вариантов ряда (-) или ко всем вариантам (+) постоянное число, то ср. ар. соответственно уменьшится или увеличится на это число.
.2.Если все варианты ряда умножить или разделить на постоянное число, то ср. ар. соответственно увеличится или уменьшится в это число раз.
3.Если все частоты увеличить или уменьшить в постоянное число раз, то средняя от этого не изменится.
.

4.Сумма отклонений всех вариантов ряда от ср. ар. = 0. (Нулевое свойство средней). . 5.Σf i =Σfix i . Произведение средней на сумму частот всегда равно сумме произведений вариант на частоты.

6.Сумма квадратов отклонений всех вариантов ряда от ср. ар.

Данное св-во положено в основу метода наименьших квадратов, кот. широко применяется в исследовании стат. взаимосвязей.

14. Виды дисперсий. Правило их сложения .

Различают три вида дисперсий: общая; средняя внутригрупповая; межгрупповая. Общая дисперсия ( 2 о ) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле  2 о =  (X – Xо средн) 2 *f / f, где Xо средн - общая средняя арифметическая всей исследуемой совокупности. Средняя внутригрупп дисперс ( 2 средн ) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам ( 2 i ), затем рассчитывается средняя внутригрупповая дисперсия ( 2 i cредн): где ni - число единиц в группе. Межгрупповая дисперсия характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле

где - средняя величина по отдельной группе. Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

Данное соотношение отражает закон, который называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки.

15 . Виды средних. Их исчисление .

16. Показатели вариации, применяемые в статистике.

Вариация, т.е. несовпадение уровней одного и того же показателя у разных объектов, имеет объективный характер и помогает познать сущность изучаемого явления. Для измерения вариации в статистике применяют несколько способов. Наиболее простым явл расчет показателя размаха вариации Н как разницы между Xmax и Xmin: H=Xmax - Xmin. Но размах вариации показывает лишь крайние значения признака. Повторяемость промежуточных значений здесь не учитывается. Среднее линейное отклонение d - среднее арифметическое значение абсолютных отклонений признака от его среднего уровня: d =  (Xi – X средн) / n. При повторяемости отдельных значений Х используют формулу средней арифметической взвешенной. В статистических научных исследованиях для измерения вариации чаще всего применяют показатель дисперсии: δ =  (Xi – X средн) 2 / n. Показатель s, равный √δ 2 , называется средним квадратическим отклонением. Величина Mx = √(δ 2 /n)-средняя ошибка выборки и явля хар-кой отклонения выборочного среднего значения призн от его истинной средней величины. Показатель средней ошибки использ при оценке достоверности результатов выборочн наблюд. Коэфф осцилляции отражает относит колеблемость крайних значений признака вокруг средней: Ko = (R/X средн)*100%. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины Kd = (d средн/ X средн)*100%. Коэффициент вариации: V = (δ/X средн)*100%

17. Простейшие приёмы обработки рядов динамики.

Простейшими видами обработки рядов динамики являются: укрупнение интервалов, метод скользящей средней, аналитическое выравнивание, экстраполяция и интерполяция.

Укрупнение интервалов. Ряд динамики разделяют на достаточно большое число равных интервалов. Если средн уровни по интервалам не позволяют увидеть тенденцию разв, переходят к расчету уровней за большие промежутки времени, увеличивая длину каждого интервала (уменьшая количество интервалов). Скользящая средняя. В этом методе исходные уровни ряда заменяются средними величинами, которые получают из данного уровня и нескольких симметрично его окружающих. Целое число уровней, по которым рассчитывается среднее значение, называют интервалом сглаживания. Для того чтобы создать модель, выражающую основную тенденцию изменения уровней динамического ряда во вре­мени, используется аналитическое выравнивание ряда динамики. Простейшими моделями, выражаю­щими тенденцию развития, являются: линейная функция прямой, показательная функция, парабола, парабола n-порядка, гипербола, экспонента. Иногда возникает необходимость предвидеть будущий уровень ряда динамики. В таких случаях прибегают к приему обработки рядов динамики, называемому экстраполяцией : y n +1 = y n + ∆y n +∆∆y n , где y n +1 - неизвестный уровень ряда, y n - последний известный уровень ряда, ∆y n - цепной абсолютный прирост последнего уровня ряда (∆y n = y n - y n -1), ∆∆y n - изменение прироста последнего уровня ряда. Наряду с экстраполяцией иногда применяется такой прием обработки рядов динамики, как интерполяция - искусственное нахождение отсутствующих членов внутри динамического ряда. Неизвестный уровень ряда находится по формуле: y i = (y i +1 + y i -1) / 2. Где: y i - неизвестный уровень ряда, y i +1 - последующий за неизвестным уровень ряда, y i -1 - предыдущий уровень ряда.

Средняя арифметическая обладает рядом математических свойств, которые можно использовать, чтобы упростить ее расчеты. Основные свойства средней арифметической такие.

1. Средняя арифметическая постоянной величины равна этой постоянной:

2. Сумма квадратов отклонений от средней арифметической всегда меньше, чем сумма квадратов отклонений от любой другой величины:

X (х X)2 / < (х-А)2 /.

3. Величина средней не изменится, если частоты ряда распределения заменить частостями.

4. Сумма отклонений отдельных значений признака от средней, перемножених на веса (частоты), равна нулю:

£ (х - х) = х - пх = 0 - для простой средней;

£ (х - х)/ = £ х/ - х£ / = 0 - для взвешенной средней.

5. Если все значения признаков увеличить или уменьшить в одинаковое число раз (к), то средняя (х) увеличится или уменьшится во столько же раз:

/ и у_/ ь-

то есть средняя уменьшилась в (к) раз.

6. Если из всех значений вариант (х) отнять или добавить к ним ту же постоянную величину (х0), то средняя (х) уменьшится или увеличится на такую же величину (хо):

В, (х-хо)/ = 2Х В, хо/ = -_ хо В, / = -_ И/ И/ И/ х И/ х°"

то есть средняя уменьшилась на постоянное число х0.

7. Если частоты (веса) разделить или умножить на какое-либо постоянное число ), то средняя не изменится:

Вхк/ кУх/ Ух/ -2Ж / £ /

то есть значение средней не изменилось.

8. Произведение средней на сумму частот равно сумме произведений вариант на частоты:

XI / = £X/.

Это равенство вытекает из определяющей свойства средней арифметической, согласно которой, сравнивая варианты, предоставляя им одинаковые значения путем замены их средним значением, неизменным остается общий объем признака.

9. Общая средняя равна средней из частных средних, взвешенных по численности соответствующих частей (групп) совокупности:

Изложенные выше свойства средней арифметической позволяют упростить ее расчеты: можно из всех значений признака вычесть произвольную постоянную величину, полученную разницу разделить на величину интервала, а затем вычисленную среднюю умножить на величину интервала и добавить произвольную постоянную величину, которая принята за начало отсчета.

Формула вычисления средней арифметической упрощенным способом имеет такой вид:

где х = --уменьшена средняя арифметическая;

ф

х= х к° - отклонения в интервалах; х0 - начало отсчета;

к - величина интервала.

Средняя х с значение - называется моментом первого порядка, а к способ вычисления средней способом моментов или способом отсчета от условного начала.

За условное начало отсчета (х0) обычно принимают одно из значений варіючої признаки, которое, как правило, находится в центре ряда распределения или такое, которое имеет наибольшую частоту.

Рассмотрим пример определения средней арифметической в интервальном ряду распределения способом моментов, используя данные о распределении 100 хозяйств по надою молока на корову (табл. 4.7).

За условное начало отсчета (х0) возьмем одно из значений интервала, расположенного в центре ряда распределения и которое имеет наибольшую частоту. В нашей задаче таким значением х0 = 33 ц. Величина интервала к = 2 ц.

По данным таблицы определим условную (уменьшенную) среднюю арифметическую:

Таблица 4.7. Данные для расчета средней арифметической в интервальном ряду распределения способом моментов

Чтобы получить действительную среднюю продуктивность коров, необходимо внести соответствующие поправки:

Таким образом получен такой же результат как и по данным табл. 4.2. Результаты расчетов средней арифметической двумя способами полностью совпали.

«Способ моментов» применяется в рядах с равными интервалами на основе свойств средней арифметической. Средняя арифметическая исчисляется по формуле

где i – размер интервала;

m 1 – момент первого порядка (средняя арифметическая из новых упрощенных вариант
;
– новые упрощенные варианты;f – частота);

А – постоянное число (лучше всего взять его равным варианте, у которой наибольшая частота).

Определим среднее значение признака «способом моментов» на следующем примере.

Пример 5 . Имеются следующие данные о распределении магазинов облпотребсоюза по торговой площади (табл. 14).

Таблица 14

Следует определить среднюю площадь магазинов, применив «способ моментов».

Решение

Данные распределения магазинов по торговой площади представлены в виде интервального ряда распределения с равными интервалами (i = 20 м 2), следовательно, расчет средней площади магазина можно провести по формуле
, применив «способ моментов».

Первый и последний интервалы даны открытыми, т. е. не имеют границ нижней и верхней соответственно. Для определения среднего значения в них границы интервалов следует закрыть. Для первой группы с размером площади до 40 м 2 условно считаем, что интервал также равен 20 м 2 , затем вычитаем 20 м 2 из 40 м 2 и находим условную нижнюю границу первого интервала (20 – 40). Условную верхнюю границу последнего интервала определяем аналогично (100 – 120).

Расчеты следует проводить в табл. 15.

Таблица 15

Группировка мага- зинов по торговой площади, м 2 (х )

Удельный вес магазинов, % (f )

Середина интервала (х )

х А

Наибольшая частота f равна 40, следовательно, в качестве постоянной величины А принимаем 70.

Определяем момент первого порядка:
.

Среднее значение признака равно:

+ 70 = = 68 м 2 .

Следовательно, средняя площадь магазина составляет 68 м 2 .

5.3. Структурные средние

В качестве структурных средних чаще всего используют показатели моды и медианы. Мода (Мо ) – наиболее часто повторяющееся значение признака. Медиана (Ме ) – величина признака, которая делит упорядоченный ряд на две равные по численности части.

Если расчет моды и медианы проводится в дискретном ряду, то он опирается на их понятия. В интервальном ряду распределения для расчета моды и медианы применяют следующие формулы.

Мода рассчитывается по формуле

где х Мо – нижнее значение модального интервала;

i Мо – размер модального интервала;

f Мо – частота модального интервала;

f Мо –1 – частота, предшествующая модальной частоте;

f Мо +1 – частота, последующая за модальной частотой.

Модальному интервалу соответствует наибольшая (модальная) частота. Медиана рассчитывается по формуле

,

где х Ме – нижнее значение медианного интервала;

i Ме – размер медианного интервала;

f – сумма частот;

S Ме –1 – сумма частот, предшествующих медианной частоте;

f Ме – медианная частота.

Медианному интервалу соответствует медианная частота. Таким интервалом будет интервал, сумма накопленных частот которого равна или превышает половину суммы всех частот.

Рассмотрим определение моды и медианы на следующих примерах.

Пример 6 . В результате статистического обследования области получены следующие данные по распределению семей по числу детей (табл. 16).

Таблица 16

Следует определить моду и медиану.

Решение

В дискретных рядах модой является варианта с наибольшей частотой. Наибольшая частота – 34, следовательно мода равна 2.

Для вычисления медианы определим сумму частот ряда (f = 100), затем рассчитаем полусумму
.

Так как сумма накопленных частот 5 + 32 + 34 = 71 превышает полусумму (71 > 50), то варианта, имеющая значение 2 и соответствующая этой накопленной сумме частот, и есть медиана.

Пример 7 . В результате статистического обследования получены следующие данные распределения продавцов магазинов облпотребсоюза по возрасту (табл. 17).

Таблица 17

Необходимо определить моду и медиану.

Решение

В интервальных рядах мода и медиана определяются по вышеприведенным формулам.

Сначала определим модальный интервал, он соответствует наибольшей частоте. Так как наибольшая частота равна 35 и является модальной, то интервал 30–40 является модальным интервалом. Затем подставим данные в следующую формулу:

Определим медианный интервал. Полусумма частот равна 50
. Накапливая частоты, определим интересующий интервал. Так как сумма накопленных частот 6 + 24 + 35 = 65 превышает полусумму (65 > 50), значит 35 является медианной частотой, а интервал 30–40 является медианным интервалом.

Затем подставим данные в формулу

Таким образом, мода равна 35,5 лет (больше всего продавцов в возрасте 35,5 лет), медиана – 35,7 лет (50 % продавцов достигли возраста 35,7 лет).



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация