Методы исключения гаусса. Метод Гаусса (последовательного исключения неизвестных). Примеры решений для чайников

Главная / Налоги

Одним из простейших способов решения системы линейных уравнений является прием, основанный на вычислении определителей (правило Крамера ). Его преимущество состоит в том, что он позволяет сразу провести запись решения, особенно он удобен в тех случаях, когда коэффициенты системы являются не числами, а какими-то параметрами. Его недостаток – громоздкость вычислений в случае большого числа уравнений, к тому же правило Крамера непосредственно не применимо к системам, у которых число уравнений не совпадает с числом неизвестных. В таких случаях обычно применяют метод Гаусса .

Системы линейных уравнений, имеющие одно и то же множество решений, называются эквивалентными . Очевидно, что множество решений линейной системы не изменится, если какие-либо уравнения поменять местами, или умножить одно из уравнений на какое-либо ненулевое число, или если одно уравнение прибавить к другому.

Метод Гаусса (метод последовательного исключения неизвестных ) заключается в том, что с помощью элементарных преобразований система приводится к эквивалентной системе ступенчатого вида. Сначала с помощью 1-го уравнения исключается x 1 из всех последующих уравнений системы. Затем с помощью2-го уравнения исключается x 2 из 3-го и всех последующих уравнений. Этот процесс, называемый прямым ходом метода Гаусса , продолжается до тех пор, пока в левой части последнего уравнения останется только одно неизвестное x n . После этого производится обратный ход метода Гаусса – решая последнее уравнение, находим x n ; после этого, используя это значение, из предпоследнего уравнения вычисляем x n –1 и т.д. Последним находим x 1 из первого уравнения.

Преобразования Гаусса удобно проводить, осуществляя преобразования не с самими уравнениями, а с матрицами их коэффициентов. Рассмотрим матрицу:

называемую расширенной матрицей системы, ибо в нее, кроме основной матрицы системы, включен столбец свободных членов. Метод Гаусса основан на приведении основной матрицы системы к треугольному виду (или трапециевидному виду в случае неквадратных систем) при помощи элементарных преобразованиях строк (!) расширенной матрицы системы.

Пример 5.1. Решить систему методом Гаусса:

Решение . Выпишем расширенную матрицу системы и, используя первую строку, после этого будем обнулять остальные элементы:

получим нули во 2-й, 3-й и 4-й строках первого столбца:


Теперь нужно чтобы все элементы во втором столбце ниже 2-й строки были равны нулю. Для этого можно умножить вторую строку на –4/7 и прибавить к 3-й строке. Однако чтобы не иметь дело с дробями, создадим единицу во 2-й строке второго столбца и только

Теперь, чтобы получить треугольную матрицу, нужно обнулить элемент четвертой строки 3-го столбца, для этого можно умножить третью строку на 8/54 и прибавить ее к четвертой. Однако чтобы не иметь дело с дробями поменяем местами 3-ю и 4-ю строки и 3-й и 4-й столбец и только после этого произведем обнуление указанного элемента. Заметим, что при перестановке столбцов меняются местами, соответствующие переменные и об этом нужно помнить; другие элементарные преобразования со столбцами (сложение и умножение на число) производить нельзя!


Последняя упрощенная матрица соответствует системе уравнений, эквивалентной исходной:

Отсюда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x 3 = –1; из третьего x 4 = –2, из второго x 2 = 2 и из первого уравнения x 1 = 1. В матричном виде ответ записывается в виде

Мы рассмотрели случай, когда система является определенной, т.е. когда имеется только одно решение. Посмотрим, что получится, если система несовместна или неопределенна.

Пример 5.2. Исследовать систему методом Гаусса:

Решение . Выписываем и преобразуем расширенную матрицу системы

Записываем упрощенную систему уравнений:

Здесь, в последнем уравнении получилось, что 0=4, т.е. противоречие. Следовательно, система не имеет решения, т.е. она несовместна . à

Пример 5.3. Исследовать и решить систему методом Гаусса:

Решение . Выписываем и преобразуем расширенную матрицу системы:

В результате преобразований, в последней строке получились одни нули. Это означает, что число уравнений уменьшилось на единицу:

Таким образом, после упрощений осталось два уравнения, а неизвестных четыре, т.е. два неизвестных "лишних". Пусть "лишними", или, как говорят, свободными переменными , будут x 3 и x 4 . Тогда

Полагая x 3 = 2a и x 4 = b , получим x 2 = 1–a и x 1 = 2b a ; или в матричном виде

Записанное подобным образом решение называется общим , поскольку, придавая параметрам a и b различные значения, можно описать все возможные решения системы. à

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений - ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: , после чего приводится к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица:);

b) определения ранга матрицы (согласно следствию из теоремы Кронекера-Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

Комбинаторика.

Сколькими способами трое мальчиков - Алмас, Болат, Сабыр - могут стоять в одном ряду? - Это не трудно, напишем все возможные случаи (комбинации): АБС, АСБ, БАС, БСА, САБ, СБА. Всего шесть комбинаций.

Допустим к ним присоединился еще один мальчик Даурен. Каковы будут способы расположения в этом случае? В возможных шести случаях Даурен может стоять первым, вторым, третьим и последним:

ДАБС, ДАСБ, ДБАС, ДБСА, ДСАБ, ДСБА;
АДБС, АДСБ, БДАС, БДСА, СДАБ, СДБА;
АБДС, АСДБ, БАДС, БСДА, САДБ, СБДА;
АБСД, АСБД, БАСД, БСАД, САБД, СБАД.

Всего 24 разных способов. А если еще увеличить количество детей? Каждый раз писать и выводить общее количество трудно. Нам нужно определить число способов, а не виды способов. Нет ли других методов для определение этого число? - Есть. И в теории вероятностей нас больше интересует количество способов расположения, чем виды расположения. Раздел математики, называемый комбинаторикой, дает возможность сразу определить количество таких способов. Ознакомимся с основными понятиями комбинаторики, необходимыми для решения задач теории вероятностей. Это - перестановка, размещение и сочетания. Остановимся на каждом в отдельности.

1. Перестановка. Рассмотрим число случаев в предыдущей задаче. Мы переставили местами буквы А, Б, С и посчитали число всевозможных комбинаций, оно равнялось 6. А когда число мальчиков увеличилось на единицу, переставь местами буквы А, Б, С, Д, мы нашли число всевозможных комбинаций, оно равнялось 24.

ОПРЕДЕЛЕНИЕ. Перестановкой из n различных элементов называются комбинации, которые состоят из n элементов и отличаются друг от друга только порядком их расположения.

Число перестановок из n различных элементов обозначают P n и подсчитывают по формуле:

здесь n! (читается "эн факториал") означает произведение всех натуральных чисел от 1 до n:

Понятно, что один факториал равен единице, 1! = 1, вместе с этим, в математике принято считать что и ноль факториал равен единице. И так 0! = 1.

Вернемся к примеру. Здесь n=3. Следовательно, можно найти искомое число перестановок по формуле (1): P 3 =3!=1 2 3=6. Аналогично, число перестановок из четырех букв равно: P 4 =4!=1 2 3 4=24

Пример 7. Найдем значение выражения с факториалами 8!/6! 2!

Сначала преобразуем 8!=1 2 3 4 5 6 7 8=6! 7 8

Это преобразование подставим в выражение и упростим. 8!/6! 2=6! 7 8/6! 2=7 8/2=28

2. Размещения. Рассмотрим пример. Сколько двузначных чисел (цифры не повторяются) можно записать с помощью цифр 7, 8, 9. Это можно сделать в двух этапах: первый этап - определение количество подбора разрядов десятков числа, он равен 3 (любая из данных 3 цифр может занять разряд десятков); второй этап - определение количество подбора разрядов единиц числа, он равен 2 (любая цифра из оставшихся двух может занять разряд единиц). По правилу умножения из трех чисел можно составить всего 3 2=6 различных двузначных чисел. Действительно, можно в этом убедиться непосредственно записывая эти числа 78, 79, 87, 89, 97, 98, При решении задачи мы расположили по два элемента из трех, причем эти комбинации отличаются либо составом (78, 98), либо порядком их расположения (78, 87).

ОПРЕДЕЛЕНИЕ. Размещением из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающихся друг от друга либо самими элементами, либо порядком их расположения.

Число размещений из n элементов по m элементов обозначают и читают так: "А из эн по эм". Чтобы найти используют формулу:

(15)

Рассмотрим еще один пример. В 5 классе изучают 10 предметов. Сколькими способами можно составить расписание, если в этот день должно быть 4 различных урока?

Чтобы найти число способов расположения 10-ти предметов по четыре предмета, воспользуемся формулой (15) нахождения числа размещений из 10 элементов по 4 элемента:

Итак, 10 предметов по 4 предмета можно расположить 5040 различными способами.

3. Сочетания. Пример. Нужно составить произведения двух различных чисел из данных трех чисел 7, 8, 9.

Учитывая переместительное свойство умножения, имеем: 7 8=56, 7 9=63, 8 9=72. При решении задачи мы отобрали по два элемента из трех, причем эти комбинации отличаются только составом (78, 98), а их расположения не влияют на произведение.

ОПРЕДЕЛЕНИЕ. Сочетанием из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающиеся друг от друга только составом.

Число сочетаний из n элементов по m элементов обозначают и читают так: "це из эн по эм". Чтобы найти используют формулу:

(16)

В нашем примере n=3, а m=2. Тогда

Рассмотрим еще пример. В классе 25 учеников, из них 12 мальчиков. а) Нужно составить дежурство по два человека, причем пары должны состоят либо из мальчиков, либо из девочек. б) Сколько можно создать групп для дежурства, из двух мальчиков и одной девочки?

Решение. а) При решении этой задачи воспользуемся правилом сложения и формулой сочетания. Сначала посчитаем сколько пар можно создать из мальчиков (m 1) и из девочек (m 2), после найдем их сумму (m=m 1 +m 2).

Чтобы определить сколько пар можно создать из 12 мальчиков воспользуемся формулой для подсчета числа сочетаний из 12 элементов по 2 элемента

Из девочек можно создать 78 различных пар. Тогда по два мальчика и по две девочки всего можно создать m=66+78=144 различных пар.

б) При решении этой задачи воспользуемся правилом умножения и формулой сочетания. В группе два мальчика и одна девочка. Сначала посчитаем сколькими способами можно выбрать из 12 мальчиков по два мальчика (m 1) и из 13 девочек одну девочку (m 2), затем перемножим полученные результаты (m=m 1 m 2).
Из 12 мальчиков 2 мальчика можно выбрать 66 различными способами. А из 13 девочек 1 девочку можно выбрать следующим образом:

Тогда группу из двух мальчиков и из одной девочки можно создать m=66 13=856 различными способами.

Определение матрицы. Определители второго и третьего порядков, их основные свойства. Миноры и алгебраические дополнения, разложение определителя по строке (столбцу). Методы вычисления определителей. Понятие об определителе n-го порядка.

Определение 1.1 . Матрицей называется прямоугольная таблица чисел.

Обозначения: А – матрица, - элемент матрицы, номер строки, в которой стоит данный элемент, номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.

Определение 1.2 . Числа m и n называются размерностями матрицы.

Определение 1.3. Матрица называется квадратной , если m = n. Число n в этом случае называют порядком квадратной матрицы.

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

.

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

1. 2.

Определение 1.5 . Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

А` , называемая транспонированной по отношению к матрице А , элементы которой связаны с элементамиА соотношением a` ij = a ji .

(СЛАУ), состоящая из уравнений с неизвестными:

Предполагается, что существует единственное решение системы, то есть .

В данной статье будут рассмотрены причины погрешности, возникающей во время решения системы с помощью метода Гаусса, способы выявления и ликвидации(уменьшения) этой погрешности.

Описание метода

Процесс решения системы линейных уравнений

по методу Гаусса состоит из 2х этапов:

1. Предполагаем, что . Тогда первое уравнение системы делим на коэффициент , в результате получаем уравнение . Затем из каждого из оставшихся уравнений вычитается первое, умноженное на соответствующий коэффициент . В результате система преобразуются к виду: 2. В предположении, что , делим второе уравнение на коэффициент и исключаем неизвестное из всех последующих уравнений и т.д. 3. Получаем систему уравнений с треугольной матрицей:
  • Обратный ход Непосредственное определение неизвестных
1. Из го уравнения системы определяем 2. Из го - определяем и т.д.

Анализ метода

Данный метод относится к классу прямых методов решения системы уравнений, а это значит, что за конечное число шагов можно получить точное решение, при условии, что входные данные (матрица и правая часть уравнения - ) заданы точно и вычисление ведется без округлений. Для получения решения требуется умножений и делений, то есть порядка операций.

Условия, при которых метод выдает точное решение, на практике не выполнимы - неизбежны как ошибки входных данных, так и ошибки округления. Тогда встает вопрос: насколько точное решение можно получить, используя метод Гаусса, насколько метод корректен? Определим устойчивость решения относительно входных параметров. Наряду с исходной системой рассмотрим возмущенную систему:

Пусть введена некоторая норма . - называется числом обусловленности матрицы .

Возможны 3 случая:

Число обусловленности матрицы всегда . Если оно велико () , то говорят, что матрица плохо обусловлена. В этом случае малые возмущения правых частей системы , вызванные либо неточностью задания исходных данных, либо вызванные погрешностями вычисления, существенно влияют на решение системы. Грубо говоря, если погрешность правых частей , то погрешность решения будет .

Проиллюстрируем полученные результаты на следующем числовом примере: Дана система

Она имеет решение .

Теперь рассмотрим возмущенную систему:

Решением такой системы будет вектор .

При совсем малом возмущении правой части получили несоизмеримо большое возмущение решения. Объяснить такую "ненадежность" решения можно тем, что матрица почти вырожденная: прямые, соответствующие двум уравнениям, почти совпадают, что видно на графике:

Такой результат можно было предвидеть в силу плохой обусловленностью матрицы :

Вычисление является достаточно сложным, сравнимо с решением всей системы, поэтому для оценки пограшности применяются более грубые, но простые в реализации методы.

Способы оценки ошибок

1) Контрольная сумма: обычно применяется для предупреждения случайных погрешностей в процессе вычисления без помощи компьютеров.

Составляем контрольный столбец , состоящий из контрольных элементов системы:

При преобразовании уравнений над контрольными элементами производятся те же операции, что и над свободными членами уравнеий. В результате этого контрольный элемент каждого нового уравнения должен равняться сумме коэффициентов этого уравнения. Большое расхождение между ними указывает на погрешности в вычислениях или на неустойчивость алгоритма вычислений по отношению к вычислительной погрешности.

2) Относительная погрешность известного решения позволяет без существенных дополнительных затрат получить суждение о погрешности решения.

Задается некоторый ветор с компонентами, имеющими по возможности тот же порядок и знак, что и компоненты искомого решения . Вычисляется вектор , и на ряду с исходной системой уравнения решается система .

Пусть и - реально получаемые решения этих систем. Суждение о погрешности искомого решения можно получить, основываясь на гипотезе: относительные погрешности при решении методом исключения систем с одной и той же матрицей и различными правыми частями, которыми являются соответственно величины и , отличаются не в очень большое число раз.

3) Изменение масштабов - прием, применяющийся для получения представления о реальной величине погрешности, возникающей за счет округлений при вычислениях.

Наряду с исходной системой тем же методом решается система

, где и - числа

Если бы не было погрешности округления, то выполнялось бы равенство для решений исходной и масштабированной систем: . Поэтому при и , не являющихся степенями двойки, сравнение векторов и дает представление о величине вычислительной погрешности

Улучшение метода исключения Гаусса

Рассмотренные ниже модификации метода Гаусса позволяют уменьшить погрешность результата.

Выбор главного элемента

Основное увеличение ошибки в методе происходит во время прямого хода, когда ведущая -я строка умножается на коэффициенты .Если коэффициенты 1%20" alt=" >1 ">, то ошибки, полученные на предыдущих шагах накапливаются. Чтобы этого избежать, применяется модификация метода Гаусса с выбором главного элемента. На каждом шаге к обычной схеме добавляется выбор максимального элемента по столбцу следующим образом:

Пусть по ходу исключения неизвестных получена система уравнений:

, .

Найдем такое , что и поменяем местами -е и -е уровнения.

Такое преобразование во многих случаях существенно уменьшает чувствительность решения к погрешностям округления при вычислениях.

Итеративное улучшение результата

Если есть подозрение, что полученное решение сильно искажено, то можно улучшить результат следующим образом. Величина называется невязкой. Погрешность удовлетворяет системе уравнений

.

Решая эту систему, получаем приближение к и полагаем

.

Если точность данного приближения неудовлетворительна, то повторяем эту операцию.

Процесс можно продолжать до тех пор, пока все компоненты не станут достаточно малыми. При этом нельзя останавливать вычисления только потому, что все компоненты вектора невязки стали достаточно малыми: это может быть результатом плохой обусловленности матрицы коэффициентов.

Числовой пример

Рассмотрим для примера матрицу Вандермонда размером 7х7 и 2 различные правые части:

Данные системы были решены двумя способами. Тип данных - float. B итоге получили следующие результаты:

Обычный метод
1 2
1 2 1 2
0.999991 1 0.999996 1
1.00019 1 7.4774e-005 2,33e-008
0.998404 1 0.999375 1
1.00667 1 0.00263727 1,12e-006
0.985328 1 0.994149 1
1.01588 1 0.00637817 3,27e-006
0.993538 1 0.99739 1
0,045479 2,9826e-006 0,01818 8,8362e-006
0,006497 4,2608e-007 0,0045451 2,209e-006
0,040152 4,344e-005 0,083938 2,8654e-006
С выбором ведущего элемента по строке
1 2
1 2 1 2
1 1 1 1
1 1 -3.57628e-005 1,836e-007
1.00001 1 1.00031 1
0.999942 1 -0.00133276 7,16e-006
1.00005 1 1.00302 0,99998
1.00009 1 -0.0033505 1,8e-005
0.99991 1 1.00139 0,99999
0,000298 4,3835e-007 0,009439 5,0683e-005
4,2571e-005 6,2622e-008 0,0023542 1,2671e-005
0,010622 9,8016e-007 0,29402 1,4768e-006

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее , он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн . Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь - пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

Сначала запишем расширенную матрицу:

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

Вуаля - система приведена к соответствующему виду. Осталось найти неизвестные:

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набъете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

2. Модификации метода Гаусса

Метод Гаусса с выбором главного элемента. Основным ограничением метода Гаусса является предположение о том, что все элементы , на которые производится деление на каждом шаге прямого хода, не равны нулю. Эти элементы называются главными элементами и располагаются на главной диагонали матрицы A.

Если на некотором шаге прямого хода главный элемент = 0, то дальнейшее решение системы невозможно. Если главный элемент имеет малое значение, близкое к нулю, то возможен сильный рост погрешности из-за резкого возрастания абсолютной величины получаемых в результате деления коэффициентов. В таких ситуациях метод Гаусса становится неустойчивым.

Исключить возникновение подобных случаев позволяет метод Гаусса с выбором главного элемента.

Идея этого метода состоит в следующем. На некотором k-м шаге прямого хода из уравнений исключается не следующая по номеру переменная x k , а такая переменная, коэффициент при которой является наибольшим по абсолютной величине. Этим гарантируется отсутствие деления на нуль и сохранение устойчивости метода.

Если на k-м шаге в качестве главного элемента выбирается ¹ , то в матрице A¢ должны быть переставлены местами строки c номерами k и p и столбцы с номерами k и q.

Перестановка строк не влияет на решение, так как соответствует перестановке местами уравнений в системе, но перестановка столбцов означает изменение нумерации переменных. Поэтому информация обо всех переставляемых столбцах должна сохраняться, чтобы после завершения обратного хода можно было бы восстановить исходную нумерацию переменных.

Существуют две более простые модификации метода Гаусса:

С выбором главного элемента по столбцу;

С выбором главного элемента по строке.

В первом случае в качестве главного элемента выбирается наибольший по абсолютной величине элемент k-й строки (среди элементов , i = ). Во втором - наибольший по абсолютной величине элемент k-го столбца (среди элементов , i = ). Наибольшее распространение получила первый подход, поскольку здесь не изменяется нумерация переменных.

Следует заметить, что указанные модификации касаются только прямого хода метода Гаусса. Обратный ход выполняется без изменений, но после получения решения может потребоваться восстановить исходную нумерацию переменных.

LU-разложение. В современном математическом обеспечении ЭВМ метод Гаусса реализуется с использованием LU-разложения, под которым понимают представление матрицы коэффициентов A в виде произведения A = LU двух матриц L и U, где L – нижняя треугольная матрица, U - верхняя треугольная матрица

Если LU-разложение получено, то решение исходной системы уравнений (2) сводится к последовательному решению двух следующих систем уравнений с треугольными матрицами коэффициентов

линейный алгебраический уравнение численный


где Y = - вектор вспомогательных переменных.

Такой подход позволяет многократно решать системы линейных уравнений с разными правыми частями B. При этом наиболее трудоемкая часть (LU-разложение матрицы A) выполняется только один раз. Эта процедура соответствует прямому ходу метода Гаусса и имеет оценку трудоемкости O(n 3). Дальнейшее решение систем уравнений (6) и (7) может выполняться многократно (для различных B), причем решение каждой из них соответствует обратному ходу метода Гаусса и имеет оценку вычислительной сложности O(n 2).

Для получения LU-разложения можно воспользоваться следующим алгоритмом.

1. Для исходной системы (1) выполнить прямой ход метода Гаусса и получить систему уравнений треугольного вида (5).

2. Определить элементы матрицы U по правилу

u ij = C ij (i = ; j = )

3. Вычислить элементы матрицы L по правилам

Расчетные формулы для решения системы (6) имеют следующий вид:

y 1 = b 1 / l 11 ;

Расчетные формулы для решения системы (7)

(i = n - 1, n - 2, …, 1).




При этом собственно нахождение обратной матрицы – процесс достаточно трудоемкий и его программирование вряд ли можно назвать элементарной задачей. Поэтому на практике чаще применяют численные методы решения систем линейных уравнений. К численным методам решения систем линейных уравнений относят такие как: метод Гаусса, метод Крамера, итеративные методы. В методе Гаусса, например, работают над...

35437 x4=0.58554 5 x1=1.3179137 x2=-1.59467 x3=0.35371 x4=0.58462 6 x1=1.3181515 x2=-1.59506 x3=0.35455 x4=0.58557 5. Сравнительный анализ различных методов численного дифференцирования и интегрирования 5.1 Методы численного дифференцирования 5.1.1 Описание метода Предположим, что в окрестности точки xiфункция F (x) дифференцируема достаточное число раз. ...




На языке Turbo Pascal 7.0 для решении систем линейных алгебраических уравнений, используя метод простой итерации. 1.2 Математическая формулировка задачи Пусть А – невырожденная матрица и нужно решить систему где диагональные элементы матрицы А ненулевые. 1.3 Обзор существующих численных методов решения задачи Метод Гаусса В методе Гаусса матрица СЛАУ с помощью равносильных...

Числа). Далее по формулам (2) последовательно находятся xn-1 , xn-2 ,…, x1 при i=n-1, n-2,...,1 соответственно. Таким образом, решение уравнений вида (1) описываем способом, называемым методом прогонки, сводится к вычислениям по трём простым формулам: нахождение так называемых прогоночных коэффициентов δi, λiпо формулам (3) при i=1,2,…,n (прямая прогонка) и затем неизвестных xi по...



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация