Закон бойля мариотта устанавливает связь между. Законы Бойля – Мариотта, Гей-Люссака, Шар­ля

Главная / Налоги

Исследования великого английского ученого Бойля положили начало рождению новой химической науки. Он выделил химию в самостоятельную науку и показал, что у нее свои проблемы, свои задачи, которые надо решать своими методами, отличными от медицины. Систематизируя многочисленные цветные реакции и реакции осаждения, Бойль положил начало аналитической химии. Он же стал автором одного из первых законов рождающейся физико-химической науки.

Роберт Бойль (1627—1691) был тринадцатым ребенком из четырнадцати детей Ричарда Бойля — первого герцога Коркского, свирепого и удачливого стяжателя, жившего во времена королевы Елизаветы и умножившего свои угодья захватом чужих земель. Он родился в Лисмор Касле, одном из ирландских поместий отца. Там Роберт провел свое детство. Он получил превосходное домашнее образование и в возрасте восьми лет стал студентом Итонского университета. Там он проучился четыре года, после чего уехал в новое поместье отца — Столбридж.

Как было принято в то время, в возрасте двенадцати лет Роберта вместе с братом отправили в путешествие по Европе. Он решил продолжить образование в Швейцарии и Италии и пробыл там долгие шесть лет. В Англию Бойль вернулся только в 1644 году, уже после смерти отца, который оставил ему значительное состояние.

В Столбридже он устроил лабораторию, где к концу 1645 года начал исследования по физике, химии и агрохимии. Бойль любил работать одновременно по нескольким проблемам. Обычно он подробно разъяснял помощникам, что предстоит им сделать за день, а затем удалялся в кабинет, где его ждал секретарь. Там он диктовал свои философские трактаты.

Ученый-энциклопедист, Бойль, занимаясь проблемами биологии, медицины, физики и химии, проявлял не меньший интерес к философии, теологии и языкознанию. Бойль придавал первостепенное значение лабораторным исследованиям. Наиболее интересными и разнообразными были его опыты по химии. Он считал, что химия, отпочковавшись от алхимии и медицины, вполне может стать самостоятельной наукой.

Поначалу Бойль занялся получением настоев из цветов, целебных трав, лишайников, древесной коры и корней растений. Самым интересным оказался фиолетовый настой, полученный из лакмусового лишайника. Кислоты изменяли его цвет на красный, а щелочи — на синий. Бойль распорядился пропитать этим настоем бумагу и затем высушить ее. Клочок такой бумаги, погруженный в испытуемый раствор, изменял свой цвет и показывал, кислый ли раствор или щелочной. Это было одно из первых веществ, которые уже тогда Бойль назвал индикаторами.

Наблюдательный ученый не мог пройти мимо еще одного свойства растворов: когда к раствору серебра в азотной кислоте добавляли немного соляной кислоты, образовывался белый осадок, который Бойль назвал «луна корнеа» (хлорид серебра). Если этот осадок оставляли в открытом сосуде, он чернел. Это была аналитическая реакция, достоверно показывающая, что в исследуемом веществе содержится «луна» (серебро).

Молодой ученый продолжал сомневаться в универсальной аналитической способности огня и искал иные средства для анализа. Его многолетние исследования показали, что, когда на вещества действуют теми или иными реактивами, они могут разлагаться на более простые соединения. Используя специфические реакции, можно было определять эти соединения. Одни вещества образовывали окрашенные осадки, другие выделяли газ с характерным запахом, третьи давали окрашенные растворы и т. д. Процессы разложения веществ и идентификацию полученных продуктов с помощью характерных реакций Бойль назвал анализом. Это был новый метод работы, давший толчок развитию аналитической химии.

В 1654 году ученый переселился в Оксфорд, где продолжил свои эксперименты вместе с ассистентом Вильгельмом Гомбергом. Исследования сводились к одной цели: систематизировать вещества и разделить их на группы в соответствии с их свойствами.

После Гомберга его ассистентом стал молодой физик Роберт Гук. Они посвятили свои исследования в основном газам и развитию корпускулярной теории.

Узнав из научных публикаций о работах немецкого физика Отто Герике, Бойль решил повторить его эксперименты и для этой цели изобрел оригинальную конструкцию воздушного насоса. Первый образец этой машины был построен с помощью Гука. Исследователям удалось почти полностью удалить воздух насосом. Однако все попытки доказать присутствие эфира в пустом сосуде оставались тщетными.

— Никакого эфира не существует, — сделал вывод Бойль. Пустое пространство он решил назвать вакуумом, что по-латыни означает «пустой».

В 1660 году в своем поместье Бойль завершил свою первую большую научную работу — «Новые физико-механические эксперименты относительно веса воздуха и его проявления». Следующей стала книга «Химик — скептик». В этих книгах Бойль камня на камне не оставил от учения Аристотеля о четырех элементах, существовавшего без малого
две тысячи лет, Декартова «эфира» и трех алхимических начал. Естественно, этот труд вызвал резкие нападки со стороны последователей Аристотеля и картезианцев. Однако Бойль опирался в нем на опыт, и потому доказательства его были неоспоримы. Большая часть ученых — последователи корпускулярной теории — с восторгом восприняли идеи Бойля. Многие из его идейных противников тоже вынуждены были признать открытия ученого.

Новым ассистентом у него в лаборатории Оксфорда становится молодой физик Ричард Таунли. Вместе с ним Бойль открыл один из фундаментальных физических законов, установив, что изменение объема газа обратно пропорционально изменению давления. Это означало, что, зная изменение объема сосуда, можно было точно вычислить изменение давления газа. Это открытие стало величайшим открытием XVII века. Бойль впервые описал его в 1662 году («В защиту учения относительно эластичности и веса воздуха») и скромно назвал гипотезой.

Понятие упругости воздуха, что соответствует нынешнему понятию давлению, было определяющим в замыслах и в осуществлении опытов Бойля.

«Упругость воздуха, — пишет Льоцци, — была продемонстрирована Паскалем в опыте, повторенном Академией опытов и Герике. Пузырь с воздухом раздувается, если его поместить в барометрическую камеру или в резервуар, из которого откачан воздух. Опыт Герике с двумя сообщающимися сосудами также свидетельствовал об упругости воздуха». Заметим кстати, что из описанных опытов с воздухом родилась теория упругости. Этот термин, введенный Пекке в 1651 году, широко применялся Бойлем, который произвел также первые исследования упругости твердых тел.

Против такого понимания ополчился Франческо Лино (1595—1675) который по существу отстаивал идеи, выдвинутые Фабри, а также Мерсенном, пытавшимися приписать эффект Торричелли и всасывание воды насосом сцеплению «крючковатых» частиц воды и воздуха, сталкивающихся друг с другом. В своей работе «Об эксперименте с ртутью в стеклянных трубках...», опубликованной в 1660 году, Лино замечает, что если опустить в ртуть трубку, открытую с обоих концов, а затем прикрыть верхний конец пальцем и частично вытащить трубку из ртути, то чувствуется, что подушечка пальца втягивается внутрь трубки. Это притяжение, рассуждает далее Лино, свидетельствует не о внешнем атмосферном давлении, а о внутренней силе, обусловленной невидимыми нитями («фуникулами») материальной субстанции, прикрепленными одним концом к пальцу, а другим к столбу ртути.

Сейчас такие идеи вызывают лишь улыбку, но тогда они нуждались в серьезном рассмотрении, что и сделал Бойль в своей работе «Защита против Лино», где ставит себе целью доказать, что упругость воздуха способна на большее, нежели простое удержание торричеллиева столба».

Бойль подробнейшим образом описывает свое исследование: «Мы взяли длинную стеклянную трубку, которая искусной рукой с помощью лампы была изогнута таким образом, что согнутая вверх часть была почти параллельна остальной части. Отверстие в этом более коротком колене... было герметически запаяно. Короткое колено по всей своей длине разделено на дюймы (каждый из которых еще поделен на восемь частей) с помощью полоски бумаги с нанесенными на ней делениями, которая была аккуратно приклеена к трубке». Такая же полоска бумаги была приклеена к длинному колену. Затем в трубку была налита «ртуть в таком количестве, чтобы она заполнила полукруглую или изогнутую часть сифона» и стояла на одном и том же уровне в обоих коленах. «Когда это было сделано, мы начали доливать ртуть в длинное колено... покуда воздух в коротком колене не оказался уменьшенным благодаря сжатию так, что он занял лишь половину первичного объема... Мы не спускали глаз с более длинного колена трубки... и мы заметили, что ртуть в этом более длинном колене трубки стояла на 29 дюймов выше, чем в другом».

Подводя итоги этим экспериментам, Бойль отметил: «Когда воздух был сжат настолько, что он был сгущен в объеме, составлявшем одну четверть первоначального, мы попробовали, насколько холод от льняной ткани, смоченной водой, сгустит воздух. И порой казалось, что воздух несколько сжимается, однако не настолько, чтобы на этом можно было строить какие-то заключения. Затем мы также попробовали, будет ли жар... расширять воздух; при приближении пламени свечи к той части, где был заключен воздух, обнаружилось, что теплота оказывает более заметное действие, нежели ранее действовавший холод».

Интересно, что выводы из исследований сделал не Бойль, а Таунли. Бойль указывает, что Ричард Таунли, читая первое издание его сочинения «Новые физико-механические эксперименты касательно упругости воздуха» высказал гипотезу, что «давления и протяжения обратно пропорциональны друг другу».

Я.Г. Дорфман пишет: «Пятнадцать лет спустя после опубликования этих исследований Бойлем, т. е. в 1679 году, во Франции появилась «Речь о природе воздуха» аббата Эдма Мариотта, в которой наряду с другими вопросами описывались аналогичные экспериментам Бойля опыты по изучению зависимости между давлением воздуха и занимаемым объемом. Мариотт ни словом не упоминает о своем предшественнике, словно ему совершенно неизвестны работы Бойля по пневматике. Между тем работы Бойля были широко известны: они публиковались на латинском и английском языке. Впрочем, Мариотт не впервые забыл упомянуть своего предшественника, ведь точно так же в 1673 году в труде о соударениях он ни словом не сказал о работе Гюйгенса, позаимствовав у последнего не только методику эксперимента, но и основы теории.

Работа Мариотта значительно уступает работе Бойля в отношении тщательности эксперимента. Бойль, как мы видели, измеряет высоты ртутного столба с точностью до шестнадцатых долей дюйма, сопоставляет реально наблюдаемые значения с вычислениями и указывает на неизбежную погрешность в измерениях. Мариотт измеряет высоты ртутного столба в целых дюймах и ограничивается сообщением, что опытные данные строго согласуются с расчетными. Осторожный и критически настроенный, Бойль называет открытый им закон только «гипотезой», требующей экспериментального подтверждения. Мариотт провозглашает его законом или правилом природы. Так что по справедливости «закон Бойля—-Мариотта» должен именоваться «законом Бойля—Таунли» или «Бойля—Таунли—Гука». К сожалению, иногда в курсах физики ошибочно утверждается, будто Мариотт «уточнил» исследования Бойля, что совершенно не соответствует действительности».

Тем не менее именно Мариотт (1620—1684) предсказал различные применения закона. Из них наиболее важным был расчет высоты места по данным барометра. Расчет, производившийся путем оперирования с бесконечно малыми величинами, привел к неудаче вследствие слабой математической подготовки ученого.

Позднее в 1686 году к проблеме определения высоты по атмосферному давлению обратился английский астроном Эдмонд Галлей (1656— 1742). Он известен большинству читателей по открытой им комете, носящей его имя. Так вот, Галлей нашел формулу, по существу правильную, если не учитывать изменения температуры. Суть формулы Галлея сводилась к утверждению, что по мере возрастания высоты в арифметической прогрессии атмосферное давление уменьшается в геометрической прогрессии.

Количественное соотношение между объемом и давлением газа впервые установил Роберт Бойль в 1662 г.* Закон Бойля-Мариотта гласит, что при постоянной температуре объем газа обратно пропорционален его давлению. Этот закон применим к любому фиксированному количеству газа. Как видно из рис. 3.2, его графическое представление может быть разным. Левый график показывает, что при малом давлении объем фиксированного количества газа велик. Объем газа уменьшается при повышении его давления. Математически это записывается так:

Однако обычно закон Бойля-Мариотта записывают в виде

Такая запись позволяет, например, зная исходный объем газа V1 и его давление р вычислить давление р2 в новом объеме V2.

Закон Гей-Люссака (закон Шарля)

В 1787 г. Шарль показал, что при постоянном давлении объем газа изменяется (пропорционально его температуре. Эта зависимость представлена в графической форме на рис. 3.3, из которого видно, что объем газа линейно связан с его температурой. В математической форме эта зависимость выражается так:

Закон Шарля чаще записывают в другом виде:

V1IT1 = V2T1 (2)

Закон Шарля усовершенствовал Ж. Гей-Люссак, который в 1802 г. установил, что объем газа при изменении его температуры на 1°С изменяется на 1/273 часть того объема, который он занимал при 0°С. Отсюда следует, что если взять произвольный объем любого газа при 0°С и при постоянном давлении уменьшить его температуру на 273°С, то конечный объем окажется равным нулю. Это соответствует температуре -273°С, или 0 К. Такая температура называется абсолютным нулем. В действительности ее нельзя достичь. На рис. 3.3 показано, как экстраполяция графиков зависимости объема газа от температуры приводит к нулевому объему при 0 К.

Абсолютвый нуль, строго говоря, недостижим. Однако в лабораторных условиях удается достичь температур, отличающихся от абсолютного нуля всего на 0,001 К. При таких температурах беспорядочные движения молекул практически прекращаются. Это приводит к появлению удивительных свойств. Например, металлы, охлажденные до температур, близких к абсолютному нулю, почти полностью утрачивают электрическое сопротивление и становятся сверхпроводящими*. Примером веществ с другими необычными низкотемпературными свойствами является гелий. При температурах, близких к абсолютному нулю, у гелия исчезает вязкость и он становится сверхтекучим.

* В 1987 г. обнаружены вещества (керамика, спеченная из оксидов лантаноидных элементов, бария и меди), которые становятся сверхпроводящими при сравнительно высоких температурах, порядка 100 К (- 173 °С). Эти «высокотемпературные» сверхпроводники открывают большие перспективы в технике.- Прим. перев.

Как мы дышим?

Объем воздуха между легочными пузырьками и внешней средой осуществляется в результате ритмичных дыхательных движений грудной клетки. При вдохе объем грудной клетки и легких увеличивается, при этом давление в них понижается и воздух через воздухоносные пути (нос, горло) входит в легочные пузырьки. При выходе объем грудной клетки и легких уменьшается, давление в легочных пузырьках повышается и воздух с избыточным содержанием оксида углерода (углекислого газа) выходит из легких наружу. Здесь применим закон Бойля –Мариотта, то есть зависимость давления от объема.

Долго ли мы сможем не дышать? Даже тренированные люди могут задерживать дыхание на 3-4 и даже 6 минут, но не дольше. Более длительное кислородное голодание может привести к смерти. Поэтому кислород должен поступать в организм постоянно. Дыхание – перенос кислорода из окружающей среды внутрь организма. Основной орган дыхательной системы

– легкие, вокруг которых имеется плевральная жидкость.

Применение закона Бойля-Мариотта

Газовые законы активно работают не только в технике, но и в живой природе, широко применяются в медицине.

Закон Бойля-Мариотта начинает «работать на человека»(как впрочем и на любого млекопитающее) с момента его рождения, с первого самостоятельного вздоха.

При дыхании межреберные мышцы и диафрагма периодически изменяют объем грудной клетки. Когда грудная клетка расширяется, давление воздуха в легких падает ниже атмосферного, т.е. «срабатывает» изотермический закон (pv=const), и в следствие образовавшегося перепада давлений происходит вдох.

Дыхание легочное: диффузия газов в легких

Для того, чтобы обмен путем диффузии был достаточно эффективным, обменная поверхность должна быть большой, а диффузинное расстояние - маленьким. Диффузионный барьер в легких полностью отвечает этим условиям. Общая поверхность альвеол составляет около 50 - 80 кв. м. По своим структурным особенностям ткань легких подходит для осуществления диффузии: кровьлегочных капилляров отделена от альвеолярного пространства тончайшим слоем ткани. В процессе диффузии кислород проходит через альвеолярный эпителий, интерстициальное пространство между основными мембранами, эндотелий капилляра, плазму крови, мембрану эритроцита и внутреннюю среду эритроцита. Суммарное диффузное расстояние составляет всего около 1 мкм.

Молекулы углекислого газа диффундируют по тому же пути, но в обратном направлении - от эритроцита к альвеолярному пространству. Однако диффузия углекислого газа становится возможной только после высвобождения его из химической связи с другими соединениями.

При прохождении эритроцита через легочные капилляры время, в течении которого возможна диффузия (время контакта), относительно невелико (около 0,3 с). Однако этого времени вполне достаточно для того, чтобы напряжение дыхательных газов в крови и их парциальное давление в альвеолах практически сравнялись.

Опыт определить дыхательный объём и жизненную ёмкость лёгких.

Цель: определить дыхательный объём и жизненную ёмкость лёгких.

Оборудование: воздушный шарик, измерительная лента.

Ход работы :

Надуем воздушный шарик, как можно сильнее за N (2) спокойных выдохов.

Измерим шарика диаметр и рассчитаем его объем по формуле:

Где d–диаметр шара.

Вычислим дыхательный объем своих лёгких: , где N – числи выдохов.

Надуем шарик ещё два раза и вычислим среднее значение дыхательного объёма своих лёгких

Определим жизненную ёмкость лёгких (ЖЕЛ) – наибольший обьем воздуха, который человек может выдохнуть после самого глубокого вдоха. Для этого, не отнимая шарик ото рта, сделаем глубокий вдох через нос и максимальный выдох через рот в шарик. Повторим 2 раз. , где N=2.

Учеными, изучающими термодинамиче-ские системы, было установлено, что из-менение одного макропараметра системы ве-дет к изменению остальных. Например, по-вышение давления внутри резинового шари-ка при его нагревании вызывает увеличение его объема; повышение температуры твердо-го тела ведет к увеличению его размеров и т. п.

Эти зависимости могут быть довольно сложными. Поэтому сначала рассмотрим су-ществующие связи между макропараметра-ми на примере простейших термодинами-ческих систем, например для разреженных газов. Экспериментально установленные для них функциональные зависимости между фи-зическими величинами называют газовыми законами.

Роберт Бойль (1627—1691). Известный английский физик и химик, который исследовал свойства воздуха (масса и упругость воздуха, степень его разре-женности). На опыте показал, что тем-пература кипения воды зависит от дав-ления окружающей среды. Изучал так-же упругость твердых тел, гидростатику, световые и электрические явления, впе-рвые высказал мнение о сложном спек-тре белого света. Ввел понятие «хими-ческий элемент».

Первый газовый закон был открыт анг-лийским ученым Р. Бойлем в 1662 г. при исследовании упругости воздуха. Он взял длинную согнутую стеклянную трубку, за-паянную с одного конца, и начал наливать в нее ртуть до тех пор, пока в коротком колене не образовался небольшой закрытый объем воздуха (рис. 1.5). Затем доливал ртуть в длинное колено, изучая зависимость между объемом воздуха в запаянном конце трубки и давлением, созданным ртутью в левом колене. Предположение ученого о том, что между ними существует опреде-ленная зависимость, подтвердилось. Срав-нивая полученные результаты, Бойль сформу-лировал следующее положение:

между дав-лением и объемом данной массы газа при постоянной температуре существует обратная зависимость: p ~ 1 / V.

Эдм Мариотт

Эдм Мариотт (1620—1684) . Француз-ский физик, изучавший свойства жид-костей и газов, столкновения упругих тел, колебания маятника, естественные оптические явления. Установил зави-симость между давлением и объемом газов при постоянной температуре и объяснил на ее основании разные при-менения, в частности, как найти высоту местности по показаниям барометра. До-казал увеличение объема воды при ее замерзании.

Немного позже, в 1676 году француз-ский ученый Э. Мариотт независимо от Р. Бойля обобщенно сформулировал газо-вый закон, который теперь называют законом Бойля-Мариотта. По его утверждению, если при определенной температуре данная масса газа занимает объем V 1 при давлении p 1 , а в другом состоянии при этой же температуре его давление и объем рав-няются p 2 и V 2 , то справедливо соотно-шение:

p 1 / p 2 = V 2 / V 1 или p 1 V 1 = p 2 V 2 .

Закон Бойля-Мариотта : если при постоянной темпе-ратуре происходит термодинамический про-цесс, вследствие которого газ переходит из одного состояния (p 1 и V 1) в другое (p2и V 2), то произведение давления на объем данной массы газа при постоянной температуре яв-ляется постоянным:

pV = const. Материал с сайта

Термодинамический процесс, который про-исходит при постоянной температуре, на-зывается изотермическим (от гр. isos — рав-ный, therme — теплота). Графически на коор-динатной плоскости pV он изображается гиперболой, которая называется изотермой (рис. 1.6). Разным температурам отвечают разные изотермы — чем выше температура, тем выше на координатной плоскости pV находится гипербола (T 2 > T 1). Очевидно, что на координатной плоскости рТ и VT изо-термы изображаются прямыми, перпендику-лярными оси температур.

Закон Бойля-Мариотта устанав-ливает соотношение между дав-лением и объемом газа для изотермических процессов: при постоянной температуре объем V данной массы газа обратно пропорциональный его давлению p .


Рис. 1.6. Изотермы

На этой странице материал по темам:

  • История создания закона бойля мариотта

  • Между какими макропараметрами устанавливает взаимосвязь закон бойля-мариотта

  • Реферат на тему история создания закона бойля- мариотта

  • Сложная задача на закон бойля мариотта

  • Закон бойля-мариотта определение термодинамика

Вопросы по этому материалу:

Закон Бойля-Мариотта (Изотерма) , один из основных газовых законов, который описывает изотермические процессы в идеальных газах. Его установили учёные Р. Бойль в 1662 г. и Э. Мариотт в 1676 г. независимо друг от друга при экспериментальном изучении зависимости давления газа от его объема при постоянной температуре.

Согласно закону Бойля-Мариотта при постоянной температуре (Т=const), Объем (V) данной массы (m) идеального газа, обратно пропорционален его давлению (р):

pV = const = С при T=const и m=const

Постоянная С пропорциональна массе газа (числу молей) и его абсолютной температуре. Другими словами: произведение объема данной массы идеального газа на его давление постоянно при постоянной температуре. Закон Бойля -- Мариотта выполняется строго для идеального газа. Для реальных газов закон Бойля -- Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Закон Бойля -- Мариотта следует из кинетической теории газов, когда принимается допущение, что размеры молекул пренебрежимо малы по сравнению с расстоянием между ними и отсутствует межмолекулярное взаимодействие. При больших давлениях необходимо вводить поправки на силы притяжения между молекулами и на объем самих молекул. Как и уравнение Клайперона, закон Бойля -- Мариотта описывает предельный случай поведения реального газа, более точно описываемый уравнением Ван-дер-Ваальса. Применение закона приближенно можно наблюдать в процессе сжатия воздуха компрессором или в результате расширения газа под поршнем насоса при откачке его из сосуда.

Термодинамический процесс, который происходит при постоянной температуре называется изотермическим. Изображение его на графике (рис.1) называется изотермой.

Рис.1

Закон Гей-Люссака. Изобара

Французский ученый Ж. Гей-Люссак в 1802 году нашел экспериментально зависимость объема газа от температуры при постоянном давлении. Данные лежат в основе газового закона Гей-Люссака.

Формулировка закона Гей-Люссака следующая: для данной массы газа отношение объема газа к его температуре постоянно, если давление газа не меняется. Эту зависимость математически записывают так:

V/Т=const, если P=const и m=const

Данный закон приближенно можно наблюдать, когда происходит расширение газа при его нагревании в цилиндре с подвижным поршнем. Постоянство давления в цилиндре обеспечивается атмосферным давлением на внешнюю поверхность поршня. Другим проявлением закона Гей-Люссака в действии является аэростат. Закон Гей-Люссака не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно велика.

Графически эта зависимость в координатах V-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изобарой. Разным давлениям соответствуют разные изобары. Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным (рис.2 график изобарного процесса).


Рис.2

Закон Шарля. Изохора

Французский ученый Ж. Шарль в 1787 году нашел экспериментально зависимость давления газа от температуры при постоянном объеме. Данные лежат в основе газового закона Шарля.

Формулировка закона Шарля следующая: для данной массы газа отношение давления газа к его температуре постоянно, если объем газа не меняется. Эту зависимость математически записывают так:

P/Т=const, если V=const и m=const

Данный закон приближенно можно наблюдать, когда происходит увеличение давления газа в любой емкости или в электрической лампочке при нагревании. Изохорный процесс используется в газовых термометрах постоянного объема. Закон Шарля не соблюдается в области низких температур, близких к температуре сжижения (конденсации) газов.

Закон справедлив для идеального газа. Он неплохо выполняется для разреженных газов, которые по своим свойствам близки к идеальному. Температура газа должна быть достаточно высокой. Процесс должен проходить очень медленно

Графически эта зависимость в координатах P-T изображается в виде прямой, выходящей из точки Т=0. Эту прямую называют изохорой. Разным объемам соответствуют разные изохоры. Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Рис.3 (график изохорного процесса).



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация