Электронное строение атомов углерода. Виды гибридизации. Строение атома углерода

Главная / Квартира

Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитальное) квантовое число l = 0 (s-орбиталь) и 1 (р-орбиталь); магнитное квантовое число m = 0 (при l = 0) и –1, 0, 1 (при l = 1).

Для того, чтобы привести в соответствие электронную формулу атома С и его валентность, допускают возбуждение внешнего электронного слоя атома углерода. Тогда в атоме С 1s-орбиталь и 3р-орбитали. При перекрывании атомных орбиталей (АО) атомов С и Н три связи С–Н будут одинаковыми, а 4-я должна отличаться по прочности (связь по s- орбитали должна быть менее прочной из-за меньшего перекрывания орбиталей). В действительности это не так. Несоответствие исключается предположением о гибридизации различающихся по форме и энергии АО с появлением гибридных АО. В результате валентные электроны оказываются не на чистых s- и р- орбиталях, а на одинаковых гибридных. Для алканов характерна sр 3 - гибридизация (участвуют все 4 АО внешнего электронного уровня). В непредельных соединениях одна или две негибридизованные р-орбитали участвуют в образовании p-связей, при этом тип гибридизации атома углерода – sр 2 для алкенов и sр для алкинов.

Гибридные орбитали алканов располагаются в пространстве симметрично и направлены к вершинам тетраэдра. Связь С–Н образуется перекрыванием s-орбитали атома Н и гибридизованной орбитали атома С, связь С–С образуется за счет перекрывания 2-х гибридизованных орбиталей (направление связи – по оси между атомами). Это s- связь.

Свойства s-связи:

Относительная химическая инертность вследствие высокой прочности;

Максимум электронной плотности расположен симметрично относительно оси, соединяющей атомы, поэтому возможно свободное вращение вдоль этой оси без изменения перекрывания орбиталей (конформеры);

Длина связи 0,154 нм; угол между направлениями орбиталей 109,5°;

Электроотрицательность атома С в sр 3 -гибридном состоянии = 2,51;

Атом углерода, связанный двойной связью с другим атомом углерода, находится в состоянии sр 2 -гибридизации. (участвуют 3 АО внешнего электронного уровня). Гибридные орбитали располагаются в пространстве симметрично в одной плоскости, содержащей ядра С. Оставшаяся негибридизированная р-АО ориентирована перпендикулярно этой плоскости. Связь С–Н образуется перекрыванием s-орбитали атома Н и гибридизованной орбитали атома С. Связь С–С образуется за счет перекрывания 2-х гибридизованных орбиталей (направление – по оси между атомами, в плоскости молекулы). Это s-связь. Две негибридизованные р-АО перекрываются выше и ниже плоскости молекулы – образуется p-связь.


Отличие двойной связи от одинарной:

Расстояние между атомами углерода при двойной связи меньше, чем при одинарной (0,134 нм); угол между гибридными АО 120°;

Электроотрицательность гибридизованного атома С = 2,69;

Затрудненное вращение вокруг линии, соединяющей атомы С;

Двойная связь более прочна, т.к. увеличивается электронная плотность на связывающих МО между атомами углерода (термическая стойкость этилена выше, чем этана);

Высокая реакционная способность p-связи, что объясняется большей подвижностью электронов вне плоскости молекулы;

Повышенная электронная плотность по сравнению с одинарной связью, причем на периферии молекулы. Это приводит к тому, что к двойной связи притягиваются положительно заряженные ионы или полярные молекулы своим положительным полюсом.

Связи С–Н в ацетилене относятся к числу s-связей, образованных путем перекрывания s-орбитали водорода с гибридизованной sp-орбиталью углерода; в молекуле имеется одна углерод-углеродная s-связь (образованная перекрыванием двух гибридизованных sp- орбиталей углерода) и две углерод-углеродные p-связи (результат перекрывания двух взаимно перпендикулярных пар негибридизованных р- орбиталей (р у и р z) атомов углерода).

Свойства тройной связи:

Атомы углерода, связанные тройной связью, имеют электроотрицательность = 2,75;

Длина СºС-связи = 0,120 нм;

Валентные углы в ацетилене на основании этой модели равны 180° и моле­кула имеет линейную конфигурацию, что делает невозможной цис- транс-изомерию при тройной связи;

Связь сильно поляризована, т.к. в sр- гибридной форме углеродный атом сильнее удерживает электроны, чем в sр 2 и sр 3 – гибридных формах; следовательно; электронная пара СН-связи в молекуле ацетилена ближе к ядру С, чем в случае этилена, атом Н более подвижен, обладает слабыми кислотными свойствами (в отличие от алканов и алкенов).

Содержание статьи

УГЛЕРОД, С (carboneum), неметаллический химический элемент IVA группы (C, Si, Ge, Sn, Pb) периодической системы элементов. Встречается в природе в виде кристаллов алмаза (рис. 1), графита или фуллерена и других форм и входит в состав органических (уголь, нефть, организмы животных и растений и др.) и неорганических веществ (известняк, пищевая сода и др.).

Углерод широко распространен, но содержание его в земной коре всего 0,19%.


Углерод широко используется в виде простых веществ. Кроме драгоценных алмазов, являющихся предметом ювелирных украшений, большое значение имеют промышленные алмазы – для изготовления шлифовального и режущего инструмента.

Древесный уголь и другие аморфные формы углерода применяются для обесцвечивания, очистки, адсорбции газов, в областях техники, где требуются адсорбенты с развитой поверхностью. Карбиды, соединения углерода с металлами, а также с бором и кремнием (например, Al 4 C 3 , SiC, B 4 C) отличаются высокой твердостью и используются для изготовления абразивного и режущего инструмента. Углерод входит в состав сталей и сплавов в элементном состоянии и в виде карбидов. Насыщение поверхности стальных отливок углеродом при высокой температуре (цементация) значительно увеличивает поверхностную твердость и износостойкость. См. также СПЛАВЫ .

В природе существует множество различных форм графита; некоторые получены искусственно; имеются аморфные формы (например, кокс и древесный уголь). Сажа, костяной уголь, ламповая сажа, ацетиленовая сажа образуются при сжигании углеводородов при недостатке кислорода. Так называемый белый углерод получается сублимацией пиролитического графита при пониженном давлении – это мельчайшие прозрачные кристаллики графитовых листочков с заостренными кромками.

Историческая справка.

Графит, алмаз и аморфный углерод известны с древности. Издавна известно, что графитом можно маркировать другой материал, и само название «графит», происходящее от греческого слова, означающего «писать», предложено А.Вернером в 1789. Однако история графита запутана, часто за него принимали вещества, обладающие сходными внешними физическими свойствами, например молибденит (сульфид молибдена), одно время считавшийся графитом. Среди других названий графита известны «черный свинец», «карбидное железо», «серебристый свинец». В 1779 К.Шееле установил, что графит можно окислить воздухом с образованием углекислого газа.

Впервые алмазы нашли применение в Индии, а в Бразилии драгоценные камни приобрели коммерческое значение в 1725; месторождения в Южной Африке были открыты в 1867. В 20 в. основными производителями алмазов являются ЮАР, Заир, Ботсвана, Намибия, Ангола, Сьерра-Леоне, Танзания и Россия. Искусственные алмазы, технология которых была создана в 1970, производятся для промышленных целей.

Аллотропия.

Если структурные единицы вещества (атомы для одноатомных элементов или молекулы для полиатомных элементов и соединений) способны соединяться друг с другом в более чем одной кристаллической форме, это явление называется аллотропией. У углерода три аллотропические модификации – алмаз, графит и фуллерен. В алмазе каждый атом углерода имеет 4 тетраэдрически расположенных соседа, образуя кубическую структуру (рис. 1,а ). Такая структура отвечает максимальной ковалентности связи, и все 4 электрона каждого атома углерода образуют высокопрочные связи С–С, т.е. в структуре отсутствуют электроны проводимости. Поэтому алмаз отличается отсутствием проводимости, низкой теплопроводностью, высокой твердостью; он самый твердый из известных веществ (рис. 2). На разрыв связи С–С (длина связи 1,54 Å, отсюда ковалентный радиус 1,54/2 = 0,77 Å) в тетраэдрической структуре требуются большие затраты энергии, поэтому алмаз, наряду с исключительной твердостью, характеризуется высокой температурой плавления (3550° C).

Другой аллотропической формой углерода является графит, сильно отличающийся от алмаза по свойствам. Графит – мягкое черное вещество из легко слоящихся кристалликов, отличающееся хорошей электропроводностью (электрическое сопротивление 0,0014 Ом·см). Поэтому графит применяется в дуговых лампах и печах (рис. 3), в которых необходимо создавать высокие температуры. Графит высокой чистоты применяют в ядерных реакторах в качестве замедлителя нейтронов. Температура плавления его при повышенном давлении равна 3527° C. При обычном давлении графит сублимируется (переходит из твердого состояния в газ) при 3780° C.

Структура графита (рис. 1,б ) представляет собой систему конденсированных гексагональных колец с длиной связи 1,42 Å (значительно короче, чем в алмазе), но при этом каждый атом углерода имеет три (а не четыре, как в алмазе) ковалентные связи с тремя соседями, а четвертая связь (3,4 Å) слишком длинна для ковалентной связи и слабо связывает параллельно уложенные слои графита между собой. Именно четвертый электрон углерода определяет тепло- и электропроводность графита – эта более длинная и менее прочная связь формирует меньшую компактность графита, что отражается в меньшей твердости его в сравнении с алмазом (плотность графита 2,26 г/см 3 , алмаза – 3,51 г/см 3). По той же причине графит скользкий на ощупь и легко отделяет чешуйки вещества, что и используется для изготовления смазки и грифелей карандашей. Свинцовый блеск грифеля объясняется в основном наличием графита.

Волокна углерода имеют высокую прочность и могут использоваться для изготовления искусственного шелка или другой пряжи с высоким содержанием углерода.

При высоких давлении и температуре в присутствии катализатора, например железа, графит может превращаться в алмаз. Этот процесс реализован для промышленного получения искусственных алмазов. Кристаллы алмаза растут на поверхности катализатора. Равновесие графит алмаз существует при 15 000 атм и 300 K или при 4000 атм и 1500 K. Искусственные алмазы можно получать и из углеводородов.

К аморфным формам углерода, не образующим кристаллов, относят древесный уголь, получаемый нагревом дерева без доступа воздуха, ламповую и газовую сажу, образующуюся при низкотемпературном сжигании углеводородов при недостатке воздуха и конденсируемую на холодной поверхности, костяной уголь – примесь к фосфату кальция в процессе деструкции костной ткани, а также каменный уголь (природное вещество с примесями) и кокс, сухой остаток, получаемый при коксовании топлив методом сухой перегонки каменного угля или нефтяных остатков (битуминозных углей), т.е. нагреванием без доступа воздуха. Кокс применяется для выплавки чугуна, в черной и цветной металлургии. При коксовании образуются также газообразные продукты – коксовый газ (H 2 , CH 4 , CO и др.) и химические продукты, являющиеся сырьем для получения бензина, красок, удобрений, лекарственных препаратов, пластмасс и т.д. Схема основного аппарата для производства кокса – коксовой печи – приведена на рис. 3.

Различные виды угля и сажи отличаются развитой поверхностью и поэтому используются как адсорбенты для очистки газа, жидкостей, а также как катализаторы. Для получения различных форм углерода применяют специальные методы химической технологии. Искусственный графит получают прокаливанием антрацита или нефтяного кокса между углеродными электродами при 2260° С (процесс Ачесона) и используют в производстве смазочных материалов и электродов, в частности для электролитического получения металлов.

Строение атома углерода.

Ядро наиболее стабильного изотопа углерода массой 12 (распространенность 98,9%) имеет 6 протонов и 6 нейтронов (12 нуклонов), расположенных тремя квартетами, каждый содержит 2 протона и два нейтрона аналогично ядру гелия. Другой стабильный изотоп углерода – 13 C (ок. 1,1%), а в следовых количествах существует в природе нестабильный изотоп 14 C с периодом полураспада 5730 лет, обладающий b -излучением. В нормальном углеродном цикле живой материи участвуют все три изотопа в виде СO 2 . После смерти живого организма расход углерода прекращается и можно датировать С-содержащие объекты, измеряя уровень радиоактивности 14 С. Снижение b -излучения 14 CO 2 пропорционально времени, прошедшему с момента смерти. В 1960 У.Либби за исследования с радиоактивным углеродом был удостоен Нобелевской премии.

В основном состоянии 6 электронов углерода образуют электронную конфигурацию 1s 2 2s 2 2p x 1 2p y 1 2p z 0 . Четыре электрона второго уровня являются валентными, что соответствует положению углерода в IVA группе периодической системы (см . ПЕРИОДИЧЕСКАЯ СИСТЕМА ЭЛЕМЕНТОВ) . Поскольку для отрыва электрона от атома в газовой фазе требуется большая энергия (ок. 1070 кДж/моль), углерод не образует ионные связи с другими элементами, так как для этого необходим был бы отрыв электрона с образованием положительного иона. Имея электроотрицательность, равную 2,5, углерод не проявляет и сильного сродства к электрону, соответственно не являясь активным акцептором электронов. Поэтому он не склонен к образованию частицы с отрицательным зарядом. Но с частично ионным характером связи некоторые соединения углерода существуют, например, карбиды. В соединениях углерод проявляет степень окисления 4. Чтобы четыре электрона смогли участвовать в образовании связей, необходимо распаривание 2s -электронов и перескок одного из этих электронов на 2p z -орбиталь; при этом образуются 4 тетраэдрические связи с углом между ними 109°. В соединениях валентные электроны углерода лишь частично оттянуты от него, поэтому углерод образует прочные ковалентные связи между соседними атомами типа С–С с помощью общей электронной пары. Энергия разрыва такой связи равна 335 кДж/моль, тогда как для связи Si–Si она составляет всего 210 кДж/моль, поэтому длинные цепочки –Si–Si– неустойчивы. Ковалентный характер связи сохраняется даже в соединениях высокореакционноспособных галогенов с углеродом, CF 4 и CCl 4 . Углеродные атомы способны предоставлять на образование связи более одного электрона от каждого атома углерода; так образуются двойная С=С и тройная СєС связи. Другие элементы также образуют связи между своими атомами, но только углерод способен образовывать длинные цепи. Поэтому для углерода известны тысячи соединений, называемых углеводородами, в которых углерод связан с водородом и другими углеродными атомами, образуя длинные цепи или кольцевые структуры. См . ХИМИЯ ОРГАНИЧЕСКАЯ.

В этих соединениях возможно замещение водорода на другие атомы, наиболее часто на кислород, азот и галогены с образованием множества органических соединений. Важное значение среди них занимают фторуглеводороды – углеводороды, в которых водород замещен на фтор. Такие соединения чрезвычайно инертны, и их используют как пластичные и смазочные материалы (фторуглероды, т.е. углеводороды, в которых все атомы водорода замещены на атомы фтора) и как низкотемпературные хладагенты (хладоны, или фреоны, – фторхлоруглеводороды).

В 1980-х годах физиками США был обнаружены очень интересные соединения углерода, в которых атомы углерода соединены в 5- или 6-угольники, образующие молекулу С 60 по форме полого шара, имеющего совершенную симметрию футбольного мяча. Поскольку такая конструкция лежит в основе «геодезического купола», изобретенного американским архитектором и инженером Бакминстером Фуллером, новый класс соединений был назван «бакминстерфуллеренами» или «фуллеренами» (а также более коротко – «фазиболами» или «бакиболами»). Фуллерены – третья модификация чистого углерода (кроме алмаза и графита), состоящая из 60 или 70 (и даже более) атомов, – была получена действием лазерного излучения на мельчайшие частички углерода. Фуллерены более сложной формы состоят из нескольких сотен атомов углерода. Диаметр молекулы С 60 ~ 1нм. В центре такой молекулы достаточно пространства для помещения большого атома урана.

Стандартная атомная масса.

В 1961 Международные союзы теоретической и прикладной химии (ИЮПАК) и по физике приняли за единицу атомной массы массу изотопа углерода 12 C, упразднив существовавшую до того кислородную шкалу атомных масс. Атомная масса углерода в этой системе равна 12,011, так как она является средней для трех природных изотопов углерода с учетом их распространенности в природе. См . АТОМНАЯ МАССА.

Химические свойства углерода и некоторых его соединений.

Некоторые физические и химические свойства углерода приведены в статье ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. Реакционная способность углерода зависит от его модификации, температуры и дисперсности. При низких температурах все формы углерода достаточно инертны, но при нагревании окисляются кислородом воздуха, образуя оксиды:

Мелкодисперсный углерод в избытке кислорода способен взрываться при нагревании или от искры. Кроме прямого окисления существуют более современные методы получения оксидов.

Субоксид углерода

C 3 O 2 образуется при дегидратации малоновой кислоты над P 4 O 10:

C 3 O 2 имеет неприятный запах, легко гидролизуется, вновь образуя малоновую кислоту.

Монооксид углерода(II) СО образуется при окислении любой модификации углерода в условиях недостатка кислорода. Реакция экзотермична, выделяется 111,6 кДж/моль. Кокс при температуре белого каления реагирует с водой: C + H 2 O = CO + H 2 ; образующаяся газовая смесь называется «водяной газ» и является газообразным топливом. СO образуется также при неполном сгорании нефтепродуктов, в заметных количествах содержится в автомобильных выхлопах, получается при термической диссоциации муравьиной кислоты:

Степень окисления углерода в СО равна +2, а поскольку углерод более устойчив в степени окисления +4, то СО легко окисляется кислородом до CO 2: CO + O 2 → CO 2 , эта реакция сильно экзотермична (283 кДж/моль). СО применяют в промышленности в смеси с H 2 и другими горючими газами в качестве топлива или газообразного восстановителя. При нагревании до 500° C CO в заметной степени образует С и CO 2 , но при 1000° C равновесие устанавливается при малых концентрациях СO 2 . CO реагирует с хлором, образуя фосген – COCl 2 , аналогично протекают реакции с другими галогенами, в реакции с серой получается сульфид карбонила COS, с металлами (M) СO образует карбонилы различного состава M(CO) x , являющиеся комплексными соединениями. Карбонил железа образуется при взаимодействии гемоглобина крови с CO, препятствуя реакции гемоглобина с кислородом, так как карбонил железа – более прочное соединение. В результате блокируется функция гемоглобина как переносчика кислорода к клеткам, которые при этом погибают (и в первую очередь поражаются клетки мозга). (Отсюда еще одно название СО – «угарный газ»). Уже 1% (об.) СO в воздухе опасен для человека, если он находится в такой атмосфере более 10 мин. Некоторые физические свойства СО приведены в таблице.

Диоксид углерода, или оксид углерода(IV) CO 2 образуется при сгорании элементного углерода в избытке кислорода c выделением тепла (395 кДж/моль). CO 2 (тривиальное название – «углекислый газ») образуется также при полном окислении СО, нефтепродуктов, бензина, масел и др. органических соединений. При растворении карбонатов в воде в результате гидролиза также выделяется СО 2:

Такой реакцией часто пользуются в лабораторной практике для получения CO 2 . Этот газ можно получить и при прокаливании бикарбонатов металлов:

при газофазном взаимодействии перегретого пара с СО:

при сжигании углеводородов и их кислородпроизводных, например:

Аналогично окисляются пищевые продукты в живом организме с выделением тепловой и других видов энергии. При этом окисление протекает в мягких условиях через промежуточные стадии, но конечные продукты те же – СO 2 и H 2 O, как, например, при разложении сахаров под действием ферментов, в частности при ферментации глюкозы:

Многотоннажное производство углекислого газа и оксидов металлов осуществляется в промышленности термическим разложением карбонатов:

CaO в больших количествах используется в технологии производства цемента. Термическая стабильность карбонатов и затраты теплоты на их разложение по этой схеме возрастают в ряду CaCO 3 (см. также ПОЖАРНАЯ ПРОФИЛАКТИКА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА).

Электронное строение оксидов углерода.

Электронное строение любого оксида углерода можно описать тремя равновероятными схемами с различным расположением электронных пар – тремя резонансными формами:

Все оксиды углерода имеют линейное строение.

Угольная кислота.

При взаимодействии СO 2 с водой образуется угольная кислота H 2 CO 3 . В насыщенном растворе CO 2 (0,034 моль/л) только часть молекул образует H 2 CO 3 , а бóльшая часть CO 2 находится в гидратированном состоянии CO 2 ЧH 2 O.

Карбонаты.

Карбонаты образуются при взаимодействии оксидов металлов с CO 2 , например, Na 2 O + CO 2 Na 2 CO 3 .

За исключением карбонатов щелочных металлов, остальные практически нерастворимы в воде, а карбонат кальция частично растворим в угольной кислоте или растворе CO 2 в воде под давлением:

Эти процессы происходят в подземных водах, протекающих через пласт известняка. В условиях низкого давления и испарения из грунтовых вод, содержащих Ca(HCO 3) 2 , осаждается CaCO 3 . Так происходит рост сталактитов и сталагмитов в пещерах. Окраска этих интересных геологических образований объясняется присутствием в водах примесей ионов железа, меди, марганца и хрома. Углекислый газ реагирует с гидроксидами металлов и их растворами с образованием гидрокарбонатов, например:

CS 2 + 2Cl 2 ® CCl 4 + 2S

Тетрахлорид CCl 4 – негорючее вещество, используется в качестве растворителя в процессах сухой чистки, но не рекомендуется применять его как пламегаситель, так как при высокой температуре происходит образование ядовитого фосгена (газообразное отравляющее вещество). Сам ССl 4 также ядовит и при вдыхании в заметных количествах может вызвать отравление печени. СCl 4 образуется и по фотохимической реакции между метаном СH 4 и Сl 2 ; при этом возможно образование продуктов неполного хлорирования метана – CHCl 3 , CH 2 Cl 2 и CH 3 Cl. Аналогично протекают реакции и с другими галогенами.

Реакции графита.

Графит как модификация углерода, отличающаяся большими расстояниями между слоями гексагональных колец, вступает в необычные реакции, например, щелочные металлы, галогены и некоторые соли (FeCl 3) проникают между слоями, образуя соединения типа KC 8 , KC 16 (называемые соединениями внедрения, включения или клатратами). Сильные окислители типа KClO 3 в кислой среде (серной или азотной кислоты) образуют вещества с большим объемом кристаллической решетки (до 6 Å между слоями), что объясняется внедрением кислородных атомов и образованием соединений, на поверхности которых в результате окисления образуются карбоксильные группы (–СООН) – соединения типа оксидированного графита или меллитовой (бензолгексакарбоновой) кислоты С 6 (COOH) 6 . В этих соединениях отношение С:O может изменяться от 6:1 до 6:2,5.

Карбиды.

Углерод образует с металлами, бором и кремнием разнообразные соединения, называемые карбидами. Наиболее активные металлы (IA–IIIA подгрупп) образуют солеподобные карбиды, например Na 2 C 2 , CaC 2 , Mg 4 C 3 , Al 4 C 3 . В промышленности карбид кальция получают из кокса и известняка по следующим реакциям:

Карбиды неэлектропроводны, почти бесцветны, гидролизуются с образованием углеводородов, например

CaC 2 + 2H 2 O = C 2 H 2 + Ca(OH) 2

Образующийся по реакции ацетилен C 2 H 2 служит исходным сырьем в производстве многих органических веществ. Этот процесс интересен, так как он представляет переход от сырья неорганической природы к синтезу органических соединений. Карбиды, образующие при гидролизе ацетилен, называются ацетиленидами. В карбидах кремния и бора (SiC и B 4 C) связь между атомами ковалентная. Переходные металлы (элементы B-подгрупп) при нагревании с углеродом тоже образуют карбиды переменного состава в трещинах на поверхности металла; связь в них близка к металлической. Некоторые карбиды такого типа, например WC, W 2 C, TiC и SiC, отличаются высокой твердостью и тугоплавкостью, обладают хорошей электропроводностью. Например, NbC, TaC и HfC – наиболее тугоплавкие вещества (т.пл. = 4000–4200° С), карбид диниобия Nb 2 C – сверхпроводник при 9,18 К, TiC и W 2 C по твердости близки алмазу, а твердость B 4 C (структурного аналога алмаза) составляет 9,5 по шкале Мооса (см . рис. 2). Инертные карбиды образуются, если радиус переходного металла

Азотпроизводные углерода.

К этой группе относится мочевина NH 2 CONH 2 – азотное удобрение, применяемое в виде раствора. Мочевину получают из NH 3 и CO 2 при нагревании под давлением:

Дициан (CN) 2 по многим свойствам подобен галогенам и его часто называют псевдогалоген. Дициан получают мягким окислением цианид-иона кислородом, пероксидом водорода или ионом Cu 2+ : 2CN – ® (CN) 2 + 2e.

Цианид-ион, являясь донором электронов, легко образует комплексные соединения с ионами переходных металлов. Подобно СО, цианид-ион является ядом, связывая жизненно важные соединения железа в живом организме. Цианидные комплексные ионы имеют общую формулу –0,5x , где х – координационное число металла (комплексообразователя), эмпирически равно удвоенному значению степени окисления иона металла. Примерами таких комплексных ионов являются (строение некоторых ионов приведено ниже) тетрацианоникелат(II)-ион 2– , гексацианоферрат(III) 3– , дицианоаргентат – :

Карбонилы.

Монооксид углерода способен непосредственно реагировать со многими металлами или ионами металлов, образуя комплексные соединения, называемые карбонилами, например Ni(CO) 4 , Fe(CO) 5 , Fe 2 (CO) 9 , 3 , Mo(CO) 6 , 2 . Связь в этих соединениях аналогична связи в описанных выше цианокомплексах. Ni(CO) 4 – летучее вещество, используется для отделения никеля от других металлов. Ухудшение структуры чугуна и стали в конструкциях часто связано с образованием карбонилов. Водород может входить в состав карбонилов, образуя карбонилгидриды, такие, как H 2 Fe(CO) 4 и HCo(CO) 4 , проявляющие кислотные свойства и реагирующие со щелочью:

H 2 Fe(CO) 4 + NaOH → NaHFe(CO) 4 + H 2 O

Известны также карбонилгалогениды, например Fe(CO)X 2 , Fe(CO) 2 X 2 , Co(CO)I 2 , Pt(CO)Cl 2 , где Х – любой галоген .

Углеводороды.

Известно огромное количество соединений углерода с водородом

Углерод является шестым элементом периодической системы Менделеева. Его атомный вес равен 12.


Углерод находится во втором периоде системы Менделеева и в четвёртой группе этой системы.


Номер периода сообщает нам, что шесть электронов углерода располагаются на двух энергетических уровнях.


А четвёртый номер группы говорит, что на внешнем энергетическом уровне у углерода находится четыре электрона. Два из них это спаренные s -электроны, а два другие – не спаренные р -электроны.


Структура внешнего электронного слоя атома углерода может быть выражена следующими схемами:

Каждая ячейка вэтих схемах означает отдельную электронную орбиталь, стрелка – элетрон, находящийся на орбитали. Две стрелки внутри одной ячейки – это два электрона, находящиеся на одной орбитали, но имеющие противоположно направленные спины.


При возбуждении атома (при сообщени ему энергии) один из спаренных S -электронов занимает р -орбиталь.


Возбуждённый атом углерода может учавствовать в образовании четырёх ковалентных связей. Поэтому в подавляющем большинстве своих соединений углерод проявляет валентность, равную четырем.


Так, простейшее органическое соединение углеводород метан имеет состав СН 4 . Строение его может быть выражено структурной или электронной формулами:



Электронная формула показывает, что атом углерода в молекуле метана имеет устойчивую восьмиэлектронную внешнюю оболочку, а атомы водорода – устойчивую двухэлектронную оболочку.


Все четыре ковалентных связи углерода в метане (и в других подобных соединениях) равноценны и симметрично направлены в пространстве. Атом углерода находится как бы в центре тетраэдра (правильной четырёхугольной пирамиды), а четыре соединённых с ним атома (в случае метана – четыре атома водорода) в вершинах тетраэдра.



Углы между направлениями любой пары связей одинаковы и составляют 109 градусов 28 минут.


Это объясняется тем, что в атоме углерода, когда он образует ковалентные связи с четырьмя другими атомами, из одной s - и трёх p -орбиталей в результате sp 3 -гибридизации образуются чтыре симметрично расположенные в пространстве гибридные sp 3 -орбитали, вытянутые в направлении к вершинам тетраэдра.

Особенность свойств углерода.

Количество электронов на внешнем энергетическом уровне является главным фактором, определяющим химические свойства элемента.


В левой части периодической системы расположены элементы с малозаполненным внешним электронным уровнем. У элементов первой группы на внешнем уровне один электрон, у элементов второй группы – два.


Элементы этих двух групп являются металлами . Они легко окисляются, т.е. теряют свои внешние электроны ипревращаются в положительные ионы.


В правой части периодической системы, наоборот, находятся неметаллы (окислители) . В сравнении с металлами они обладают ядром с большим числом протонов. Такое массивное ядро обеспечивает гораздо более сильное притяжение своего электронного облака.


Такие элементы с большим трудом теряют свои электроны, зато непрочь присоединить к себе дополнительные электроны других атомов, т.е. окислить их, а самим, при этом, превратиться в отрицательный ион.


Металлические свойства элементов по мере возрастания номера группы в периодической системе ослабляются, а их способность окислять другие элементы увеличивается.


Углерод находится в четвёртой группе, т.е. как раз посередине между металлами, легко отдающими электроны, и неметаллами, легко эти электроны присоединяющими.


По этой причине углерод не обладает ярко выраженной склонности отдавать или присоединять электроны .

Углеродные цепи.

Исключительным свойством углерода, обуславливающим многообразие органических соединений, является способность его атомов соединяться прочными ковалентными связями друг с другом, образуя углеродные схемы практически неограниченной длины.


Кроме углерода, цепи из одинаковых атомов образует его аналог из IV группы – кремний. Однако такие цепи содержат не более шести атомов Si. Известны длинные цепи из атомов серы, но содержащие их соединения непрочны.


Валентности атомов углерода, не задействованные для взаимного соединения, используются на присоединение других атомов или групп (в углеводородах – для присоединения водорода).


Так углеводороды этан (С 2 Н 6 ) и пропан (С 3 Н 8 ) содержат цепи соответственно из двух и трёх атомов углерода. Строение их выражают следующие структурные и электронные формулы:



Известны соединения, содержащие в цепях сотни и более атомов углерода.


Вследствии тетраэдрической направленности связей углерода, его атомы, входящие в цепь, располагаются не на прямой, а зигзагообразно. Причём, благодаря возможности вращения атомов вокруг оси связи, цепь в пространстве может принимать различные формы (конформации):

Такая структура цепей даёт возможность сближаться концевым или другим не смежным атомам углерода. В результате возникновения связи между этими атомами углеродные цепи могут замыкаться в кольца (циклы), например:



Таким образом, многообразие органических соединений определяется и тем, что при одинаковом числе атомов углерода в молекуле возможны соединения с открытой незамкнутой цепью углеродных атомов, а также вещества, молекулы которых содержат циклы.

Простые и кратные связи.

Ковалентные связи между атомами углерода, образованные одной парой обобщённых электронов, называются простыми связями.



Связь между атомами углерода может осуществляться не одной, а двумя или тремя общими парами электронов. Тогда получаются цепи с кратными – двойными или тройными связями. Эти связи можно изобразить следующим образом:



Простейшие соединения, содержащие кратные связи – углеводороды этилен (с двойной связью) и ацетилен (с тройной связью):



Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен – первые представители двух гомологических рядов – этиленовых и ацетиленовых углеводородов.

Электронное строение атомов углерода. Виды гибридизации.

Основы строения органических соединений

Классификация органических соединений. Функциональная группа и строение углеродного скелета как классификационные признаки органических соединений, Главные классы органических соединений.

В основу современной классификации органических соединений положе­ны два важнейших признака:

Строение углеродного скелета молекулы;

Наличие в молекуле функциональных групп.

По строению углеродного скелета органические соединения делятся на группы. Ациклические (алифатические) соединения, в которых цепь атомов углеро­да может быть неразветвленной или разветвленной. Карбоциклические соединения, в которых цепь, состоящая только из атомов углерода, замкнута в цикл (кольцо). Гетероциклические соединения, имеющие в составе циклического скелета, кроме атомов углерода, один или несколько гетероатомов - как правило, ато­мы азота, кислорода или серы:

Родоначальными соединениями в органической химии считаются угле­водороды, состоящие только из атомов углерода и водорода. В большинстве своем органические молекулы содержат функциональные группы, т. е. атомы или группы атомов, определяющие химические свойства соединения и прина­длежность его к определенному классу. В состав функциональной группы обя­зательно входит гетероатом, хотя иногда к функциональным группам причис­ляют и углерод-углеродные кратные связи (С=С и С≡С). Многие такие груп­пы вообще не содержат атом углерода. В зависимости от наличия в молекуле тех или иных функциональных групп органические соединения делятся на классы.

Соединения, имеющие в молекуле одну функциональную группу, называ­ются монофункциональными; несколько одинаковых функцио­нальных групп – полифункциональными (глицерин). Гетерофункционалъные соединения содержат в молекулах различные функциональные группы. Их можно одновременно от­нести к нескольким классам.

Переход от одного класса к другому осуществляется чаще всего с участием функциональных групп без изменения углеродного скелета. Кроме того, классификационные признаки положены в основу номенклатуры органиче­ских соединений.

Номенклатура органических соединений. Тривиальная номенклатура. Основные принципы номенклатуры IUPAC (IUPAC-Международный союз теоретической и прикладной химии): заместительная и радикало -функциональная номенклатуры.

Номенклатура должна быть систематической и международ­ной, чтобы могли отобразить в названии структуру соединения и по названию однозначно представить струк­туру. Кроме того, номенклатура должна быть пригодной для компьютерной обработки.

Исторически первыми были тривиальные названия веществ, которые ука­зывали либо на источник выделения (кофеин, мочевина), либо свойства веществ (глицерин, глюкоза). Широко рас­пространены торговые названия, причем для лекарственных веществ часто в основу такого названия берется фармакологический эффект или отдельные элементы структуры. Эти на­звания удобны своей лаконичностью, но они не дают представления о стро­ении вещества и не могут быть объединены в систему. К тому же некоторые из тривиальных названий со временем выходят из употребления, хотя многие из них прочно вошли в обиход и даже легли в основу систематических названий.

Использование систематической номенклатуры применительно к ле­карственным веществам играет важную роль в фармации, поскольку многие лекарства выпускаются под разнообразными торговыми названиями. При пе­реводе же их в систематические можно зачастую убедиться, что действующим началом этих лекарственных средств может оказаться одно и то же вещество (парацетамола, панадола, тайленола – n-гидроксиацетанилид). В ходе развития органической химии возникали различные номенклатур­ные системы (Женевская, 1892; Льежская, 1930), которые после многократных усовершенствований стали основой современной систематической номенкла­туры ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии).

Номенклатура органических соединений - это система терминов, обозна­чающих строение веществ и пространственное расположение атомов в их молекулах.

Систематическое название - полностью составленное из специ­ально созданных или выбранных слогов, (пентан, тиазол). Тривиальное название - в котором ни один из слогов не исполь­зуется в систематическом смысле (мочевина, фуран). Родоначальное название - та часть названия, от которой по определенным правилам строится название целиком. Например, «этан» – «этанол». Может быть как систематическим, так и тривиальным.

Заместитель - любой атом или группа атомов, замещающие в исходном соединении атом водорода.

Характеристическая группа - в ИЮПАК прак­тически эквивалентен понятию «функциональная группа», например: амино­группа, галогены, гидроксильная группа, карбоксильная группа, карбонильная группа, оксогруппа, нитрогруппа, цианогруппа. Старшая (главная) группа - характеристическая группа, название которой отражается суффиксом. Никаких других преимуществ не имеет.

Умножающие префиксы - приставки ди-, три-, тетра- и т. д., применяе­мые для обозначения числа одинаковых заместителей или кратных связей. Локант - цифра или буква, указывающая положение заместителя или кратной связи в родоначальном названии.

Из восьми типов номенклатур в ИЮПАК наиболее универсаль­ной и распространенной является заместительная номенклатура. Реже используется радикально-функциональная номенклатура.

Заместительная номенклатура. Название строится как сложное слово, состоящее из корня (родоначальное название), префиксов и суффикса, характеризующих число и характер заместителей, степень ненасыщенности; указываются локанты. Характеристические группы делятся на два типа. Одни из них обознача­ются только в виде префиксов, другие могут быть суффиксами или префиксами в зависимости от стар­шинства. За старшую принимают ту группу, которая находится выше других в табл. Все другие обозначаются пре­фиксами.

Радикально-функциональная номенклатура. Для названий в ос­новном используются те же принципы, но для отражения старшей группы никогда не применяются суффиксы. Вместо этого одним словом отражают название функционального класса, а остальную часть на­звания - соответствующим радикалом. Для двухвалентных характеристиче­ских групп указывают оба радикала, связанные с этой группой. Если соедине­ние включает более одного типа характеристических групп, то за название функционального класса принимают такое, которое расположено выше дру­гих в табл. Остальные группы префиксами.

Принципы построения систематических названий. Включает следующие:

1. Определяют тип номенклатуры, который целесообразно применить к данному конкретному соединению.

2. Определяют старшую характеристическую группу. Именно она обуслов­ливает в дальнейшем выбор родоначальной структуры и ее нумерацию.

3. Определяют родоначальную структуру - главную углеродную цепь или основную циклическую систему, которая должна включать максимальное чис­ло старших групп. Главная углеродная цепь для ациклических соединений вы­бирается по критериям, при этом каждый последующий критерий вступает в действие лишь тогда, когда предыдущий не приводит к выбору:

а) максимальное число старших групп;

б) максимальное число кратных (двойных и тройных) связей;

в) максимальная длина цепи;

г) максимальное число заместителей.

4. Называют родоначальную структуру и старшую характеристическую группу.

5. Определяют и называют заместители.

6. Проводят нумерацию так, чтобы стар­шая группа получила наименьший номер. Если выбор неоднозначен, то применяют правило наименьших локантов - нумеруют так, чтобы заместители получили наименьшие номера. Наименьшая последовательность та, в которой первой встретится цифра меньшая, чем в другой последовательнос­ти (1,2,7- < 1,3,4 -).

7. Объединяют отдельные части названия в общее, придерживаясь алфавитного порядка префиксов (умножающие при­ставки не включаются). Цифры-локанты ставят перед префиксами и после суффиксов.

8. Радикально-функциональная номенклату­ра лишь там, где она традиционно используется до настоящего времени.

Допускаются несистематические названия для следующих незамещенных углеводородов изостроения: изобутан (СН 3) 2 СНСН 3 , изопентан (СН 3) 2 СНСН 2 СН 3 , неопентан (СН 3) 4 С, изогексан (СН 3) 2 СНСН 2 СН 2 СН 3 . Для ненасыщенных со­единений: этилен СН 2 =СН 2 , ацетилен СН≡СН, аллен СН 2 =С=СН 2 , изо­прен СН 2 =С(СН 3)СН=СН 2 .

В ряду ароматических углеводородов - аренов, сохраняются следующие несистематиче­ские названия:

Из родоначальных структур конденсированных аренов наиболее часто встречаются четыре. В ряде случаев сохраняется исторически сложившаяся нумерация (например, антрацен и фенантрен).

Несложные по структуре галогенопроизводные часто называют по ра­дикально-функциональной номенклатуре, например, изопропилбромид (СН 3) 2 СНВг, бензилхлорид С 6 Н 5 СН 2 С1.

Тривиальные названия сохраняются для ряда многоатомных спиртов и фенолов:

Менее употребительны радикально-функциональные названия солей спир­тов, образуемые заменой части названия -иловый спирт на суффикс -илат, на­пример, этилат натрия C 2 H 5 ONa, триизопропилат алюминия [(СН 3) 2 СНО] 3 А1.

Для простых эфиров, чаще чем для других классов соединений, приме­няется радикально-функциональная номенклатура. В этом случае названия образуют из названий радикалов R и R" в алфавитном порядке, предшест­вующих слову эфир, например, метилэтиловый эфир СН 3 -О-СН 2 СН 3 , диизо- пропиловый эфир (СН 3) 2 СН-О-СН(СН 3) 2 , винилфениловый эфир С 6 Н 5 -О-СН=СН 2 .

Некоторые амины сохраняют тривиальные названия:

Если соответствующая альдегиду карбоновая кислота имеет тривиальное название (1.3.10), то из него может быть образовано и тривиальное название альдегида:

Сохраняются следующие тривиальные названия:

Сохраняется тривиальное название «ацетон» для СН 3 СОСН 3 . Для многих алифатических и карбоциклических карбоновых кислот сохранены тривиальные названия, обычно предпочтительнее систематических.

Электронное строение атомов углерода. Виды гибридизации.

Строгое рассмотрение понятия химической связи базируется на принципах квантовой механики. Фундаментальный принцип квантовой механики гласит, что электроны ведут себя как волны и движение электрона можно описать с помощью волновой функции. Мате­матическая модель электронов в атоме известна как уравнение Шрёдингера. Решение дифференциального уравнения Шрёдингера позволяет получить характеристику энергетических уровней и соответствующие волновые функ­ции, описывающие движение электронов в атоме. Квадрат модуля волно­вой функции всегда положительный. Он соответствует плотности электронно­го облака в данном объеме. Графические трехмерные изображения электрон­ной плотности называются орбиталями.

Атомной орбиталью (АО) называется область пространства, в котором ве­роятность нахождения электрона максимальна.

Состояние электрона в атоме оценивается с помощью квантовых чисел , которые характеризуют энергетический уровень, форму и пространственную направленность орбитали. Для объяснения строения электронных оболочек атомов привлекаются три основных положения: принцип Паули, правило Гунда и принцип минимума энергии. Атомы и молекулы являются типичными примерами квантово-механиче­ских систем. При сближении атомов происходит перекрывание их АО. Моле­кула описывается распределением электронов между наборами молекулярных орбиталей (МО). Существуют три безразмерных квантовых числа, которые обозначают символами n, l и m. Появление квантового числа n вызвано тем, что электрон может менять свое расстояние от ядра. Квантовые числа l и m связаны с угловым моментом количества движения электрона, который может вращаться вокруг ядра в трех измерениях. Число l характеризует величину углового момента, а число m - ориентацию углового момента в пространстве, так как угловой момент - векторная величина. Число n называется главным квантовым числом. Допустимыми значениями квантовых чисел, которые вытекают из граничных условий, являются n = 1, 2, 3 ...; l = 0, 1, 2 ... (n-1); m = l, (l-1), (l-2), ..., -l.

Все орбитали с нулевым угловым моментом называются s-орбиталями. s-Орбиталь низшей энергии (n=1, l=0, m=0) называется 1s-орбиталью. Если n=2 и l=0, то это 2s-орбиталь. Если n=0, единственным значением, разрешенным для l, является нуль, но если n=2, квантовое число орбитального углового момента может принимать значения 0 (2s-орбиталь) или 1. Если l=1, атомные орбитали носят название р-орбиталей. При n=2 и l=1 мы имеем 2р-орбиталь. Поскольку для р-орбиталей l=0, квантовое число m может принимать значения +1, 0 и -1. Разные значения m соответствуют орбиталям с различными ориентациями орбитального углового момента. р-Орбиталь с m=0 имеет нулевую проекцию углового момента на ось z, и по этой причине ее называют p z -орбиталью. Две другие р-орбитали можно представить аналогичными картинами с ориентацией «лопастей» вдоль осей x и y, поэтому они называются p x - и p y -орбиталями. Если n=3, то l может принимать значения 0, 1 и 2. Это приводит к одной 3s-орбитали, трем 3р-орбиталям и пяти 3d-орбиталям. 3d-Орбиталей пять, поскольку при l =2 m может принимать значения 2, 1, 0, -1 и -2.

Чтобы отличить друг от друга два электрона на s-орбитали, необходимо еще одно квантовое число, которое называется спином. Спин связан с угловым моментом электрона, вращающегося вокруг собственной оси. Для электрона возможно лишь одно значение s=1/2. Единственное различие между двумя электронами на s-орбитали заключается в различной ориентации спинового углового момента. Таким образом, из двух электронов на 1s-орбитали один имеет α-спин, а другой - β-спин, т.е. спины этих электронов антипараллельны или, по-другому, спарены.

Существует еще один важный принцип квантовой теории, который запрещает занимать какую-либо орбиталь более чем двум электронам. Этот принцип называется запретом Паули : любая орбиталь может быть занята не более чем двумя электронами, и если ее занимают два электрона, направление их спинов должно быть противоположным. Запрет Паули относится как к атомным, так и к молекулярным орбиталям. Принцип Паули запрещает, чтобы третий электрон находился на уже заполненной двумя электронами s-орбитали, и поэтому третий электрон занимает следующую орбиталь низшей энергии.

Чтобы построить электронную конфигурацию любого атома с номером Z, нужно представить себе атомные орбитали с последовательностью энергий 1s<2s<2p<3s<3p<3d<... и затем разместить Z электронов, начиная с орбитали низшей энергии, в соответствии с принципом Паули. Необходимо лишь помнить, что имеется только одна 1s-орбиталь, одна 2s-орбиталь и т.д., но орбиталей типа 2р, 3р и т.д. по три, орбиталей типа 3d, 4d и т.д. - по пять, а орбиталей типа 4f, 5f и т.д. - по семь.

Согласно понятию гибридизации , четыре валентные орбитали атома углерода 2s, 2р х, 2p z ,2р z , могут быть заменены набором из определенного числа эквивалентных гибридных орбиталей. Следует помнить, что гибридизация - это не физическое явление, а чисто математический прием. В зависимости от комбинации гибридных и негибридизованных орбиталей атом углерода может находиться в состоянии sp 3 -, sp 2 - или sp-гибридизации. Представление об sp 3 -гибридизации атома углерода можно описать следующим образом.

Для перехода электрона с 2s- на 2р-орбиталь требуется небольшое количество энергии, которое легко компенсируется энергией, высвобождаемой при образовании двух дополнительных связей.

Оперируя понятием гибридизации, можно объяснить равноценность всех четырех химических связей в метане. Кроме того, гибридные орбитали способны к лучшему перекрыванию. Если принять относительную эффективность перекрывания s-AO за единицу, то, согласно расчетным данным, эффективность перекрывания других орбиталей возрастает в последовательности:

Таким образом, концепция гибридизации позволяет определить, где в пространстве локализованы молекулярные орбитали, т.е. связывает классические и квантовомеханические представления о структуре соединений.

4. Типы химических связей в органических соединениях. Ковалентные s– и p–связи. Строение двойных (С=С, С=О, С=N) и тройных (СºС, CºN) связей, их основные характеристики (длина, энергия, полярность, поляризуемость).

Молекулы органических соединений представляют собой совокупность атомов, связанных в определенной последовательности химическими связя­ми. Реакционная способность соединений обусловлена типом химических связей, природой связываемых атомов и их взаимным влиянием в молекуле.

Химическая связь - совокупность взаимодействий между электронами и ядрами, приводящих к соединению атомов в молекулу.

Локализованная связь - это химическая связь, электроны которой поделены между ядрами двух атомов. Для органических соединений характерны ковалентные s - и p -связи. Ковалентная связь - это химическая связь, образованная за счет обобществления электронов связываемых атомов.

Ковалентная связь образуется в результате перекрывания двух АО с образованием молекулярной орбитали, занимаемой двумя электронами. Л. Полинг ввел полезные для понимания ковалентной связи понятия направленной валентности и гибридизации орбиталей . Согласно понятию направленной валентности, связь атомов осуществля­ется в том направлении, при котором обеспечивается максимальное перекры­вание орбиталей. Чем лучше перекрывание, тем прочнее должна быть связь, и только при максимальном перекрывании достигается минимум энергии сис­темы.

При образовании ковалентных связей посредством перекрывания р-орби­талей доли р-орбиталей помечают «+» и «-», (не соотносить с зарядами). Обе доли р -электронного облака несут отрицательный заряд, но волновая функция всегда имеет противоположные знаки по обе стороны узла орбитали. Перекрываются орбитальные доли одинакового знака. Типы перекрывания орби­талей могут характеризоваться цилиндрической симметрией относительно межъядерной оси, что отвечает понятию s -связи.

s-Связь - это одинарная ковалентная связь, образованная при перекры­вании АО по прямой (оси), соединяющей ядра 2х связываемых атомов с максимальным перекрыванием на этой прямой.

Использование sp 3 -гибридных орбиталей в связывании атома 12 С с четырьмя атомами 1 Н при образовании молекулы СН 4 приводит к возникновению более прочных s -связей С-Н. Метан с четырьмя идентичны­ми заместителями у атома углерода представляет собой идеальный тетраэдр с углом Н-С-Н, равным 109°28". Такая геометрия обеспечивает ми­нимальное отталкивание между 4-мя связывающими парами электронов. Атомы 16 О, 14 N и др., подобно 12 С, могут использовать sp 3 -гибридные орбитали для образования прочных s -свя­зей.

В этилене каждый из атомов углерода связан не с 4мя, а только с 3мя другими. В данном случае электронное строение молекулы описы­вается с привлечением представлений об sp 2 -гибридизации. Три sp 2 -АО, обра­зовавшиеся из одной 2s- и двух 2р-орбиталей, лежат в одной плоскости под уг­лом 120°. В этилене s -связь С-С образуется путем перекрывания гибридных орбиталей вдоль их осей. Две оставшиеся sp 2 -орбитали каждого из атомов углерода перекрываются с s-AO водорода, образуя s -связи С-Н. Экспериментально установлено, что углы между связями Н-С-Н и Н-С-С составляют соответственно 116,7° и 121,6°, т. е. наблюдается некото­рое отклонение от идеального угла 120°. Негибридизованная 2р-АО располагается под прямым углом к плоскости каркаса σ-связей. Параллельные друг другу 2р-АО двух атомов углерода перекрываются над и под плоскостью σ-скелета с образованием МО π-связи (рис. 2.4, в).

π-Связь - это связь, образованная при боковом перекрывании негибридизованных р-АО с максимальным перекрыванием над и под плоскостью σ-связей. Электронная плотность π-связи концентрируется выше и ниже плоскости σ-связей. Плоскость, проходящая через ядра, представляет собой узловую плоскость. Вероятность нахождения в этой плоскости π-электронов равна нулю.

Представление об sp 2 -гибридизации можно применить и для 16 О, 14 N, Hal. При образовании двойной C=N 14 N использует 1 гибридную орбиталь для перекрывания с sp 2 -АО 12 С с образованием σ-связи, другую - для σ-связи др. атомом, а 3-я занята неподеленной парой электронов. При этом и у 12 С и у 14 N остаются негибридизованные р-орбитали, которые посредством бокового перекрывания образуют π-связь. Аналогично образуется связь С=O с той разницей, что на 2-х гибридных орбиталях 16 О располагаются две пары электронов.

Для описания связи С=О в карбонильной группе можно применить и представление об sp-гибридизации 16 О. В этом случае две неподеленные пары электронов 16 О располагаются на неэквивалентных орбиталях: одна на sp-гибридной АО, другая - на р y -АО, перпендикулярной p-орбиталям π-связи С=O.

В алкинах каждый 12 С тройной связи С≡С может быть связан только с 2-мя др.. В ацетилене оба 12 С находятся в состоянии sp-гибридизации. Гибридные орбитали расположены на одной прямой под углом 180°. При образовании С≡С гибридные орбитали 12 С участвуют в построении σ-связи. Две негибридизованные р-орбитали каждого из двух 12 С параллельны друг другу и могут попарно перекрываться. При этом образу­ются две π-связи в перпендикулярных плоскостях. Представление об sp-гибридизации используется и при описании тройной связи 12 С с 14 N. Неподеленная пара электронов 14 N рас­полагается на sp-АО.

Атомы 14 N, 16 О, серы и фосфора при образовании обычных кова­лентных связей используют не все внешние валентные электроны. На гибрид­ных или негибридизованных орбиталях у них имеются одна или более неподеленных пар электронов. При взаимодействии заполненной двухэлектронной АО такого гетероатома (донора) с вакантной орбиталью атома, имеющего недостаток электронов (акцептора), образует­ся новая ковалентная связь.

Донорно-акцепторная , или координационная, связь - это ковалентная связь, образованная за счет пары электронов одного атома. Например, донорно-акцепторная связь образуется в результате взаимо­действия аминов с протонами кислот, при этом два электрона донора в одинаковой степени принадлежат двум связанным атомам. Атом-донор в ре­зультате приобретает положительный заряд. Образовавшаяся ковалентная связь, например, в ионе алкиламмония, отличается от других толь­ко способом образования, по свойствам идентична другим N-Н.

Разновидностью донорно-акцепторной связи является семиполярная связь. Семиполярная связь является сочетанием ковалентной и ионной связей. В этом случае атом-донор образует связь с нейтральным атомом, у которого для завершения внешней валентной оболочки недостает пары электронов. На­пример, такая связь образуется в N-окcидах при взаимодействии аминов с H 2 O 2 . 14 N предоставляет пару электронов для обра­зования связи с атомом 16 О. В результате ковалентного связывания происходит перераспределение электронной плотности, и на связанных ато­мах возникают противоположные по знаку заряды. Характерным признаком семиполярной связи служит наличие противоположных зарядов на ковалентно-связанных атомах.

К донорно-акцепторному типу связей относятся также связи в комплекс­ных соединениях. Донором пары электронов могут быть гетероатом с неподеленной парой электронов (n-доноры) или π-электроны изолированной π-связи или системы π-связей (π-доноры). Акцепторами могут служить ионы Me (имеющие вакантные орбитали), молекулярные иод, бром (за счет расши­рения внешней валентной оболочки), электронодефицитные π-системы (соединения, в которых π-связь или π-система обеднена электронной плотно­стью из-за акцепторного влияния заместителей). Например, диоксан-триоксид серы.

Особым слу­чаем являются металлоцены - π-комплексы ароматического циклопентадиенид-иона с ионами переходных металлов (Fe 2+ , Со 2+ , Ni 2+). В ферроцене взаимодействие двух колец циклопентадиенидионов с ионом Fe 2 осу­ществляется за счет перекрывания связывающих π-МО богатых электронной плотностью колец с вакантными 3d-АО иона Fe 2+ .

Свойства ковалентной связи выражаются через ее количественные характеристики - длину, энергию, полярность, поляризуемость.

Длина связи - это расстояние между центрами связанных атомов. Основ­ными методами определения длин связей и углов между ними служат рентге­ноструктурный анализ (для твердых) и электронография (для газообразных). Атомы в молекуле колеблются относительно некоторого оптимального расстояния - равновесной длины связи, соответствующей минимуму энергии системы из двух ядер. Поэтому расстояния - это средние значения. Длины связей зависят от природы связи, но одинаковые по типу между одними и теми же атомами связи в разных соединениях имеют приблизительно постоянное значение (свойства отдельных связей в приближении не зависят от остальной части молекулы).

Длины связей с участием атома углерода зависят от его состояния гибри­дизации. Одинарные связи С-С имеют тенденцию к уменьшению длины с увеличением доли s-характера гибридной орбитали. Так, длины связей C sp 3 -C sp 2 , C sp 2 -C sp 2 , C sp 3 -C sp равны 0,154, 0,150 и 0,146 нм. Ту же тенденцию можно отметить и для связей С-Н: C sp 3 -Н > C sp 2 -Н > C sp - Н (0,110; 0,107 и 0,106 нм). При увеличении кратности связей между атомами их длина всегда уменьшается. Двойные связи С=С, С=O, C=N короче соответствующих одинарных, а тройные связи С≡С, C≡N коро­че соответствующих двойных.

Половина длины ковалентной связи между одинаковыми атомами в молекуле называется ковалентным радиусом . В случае, когда ковалентно связаны раз­ные атомы и радиус одного атома известен, то, определив длину связи, можно вычислить ковалентный радиус другого атома: длина ковалентной связи равна сумме ковалентных радиусов связанных атомов. Исключение составляют сильно полярные связи: их длина меньше, чем сумма ковалентных радиусов.

Еще одной характеристикой расстояний между атомами служит ван-дер-ваальсов радиус , являющийся мерой того, насколько могут сблизить­ся друг с другом два атома, не связанные ковалентно. Он всегда больше, чем ковалентный.

Валентные углы - это углы между двумя связями, имеющими общий атом. Углы межъядерных связей X-С-Y в органических соединениях должны со­ответствовать состоянию гибридизации атома углерода и быть равными 109,5, 120 и 180° для sp 3 -, sp 2 -, sp-гибридного состояния соответственно. Когда атом углерода в состоянии sp 3 -гибридизации связан с 4-мя одинаковыми ато­мами или группами, валентные углы соответствуют углам правильного тетраэдра. Но в боль­шинстве они отличаются от идеальных. Для атомов углерода в состоянии sp 2 - и sp -гибридизации, связан­ных с неодинаковыми заместителями, также наблюдаются отклонения от уг­лов 120 и 180° соответственно. Особенно это касается атомов или групп ато­мов, имеющих разную электроотрицательность. Пространственные затрудне­ния также влияют на изменение валентных углов.

Энергия связи - это та энергия, которую необходимо затратить для разры­ва связи между двумя атомами, и соответственно эта же энергия выделяется при образовании связи. Энергию связи можно определить с помощью спект­ральных и термохимических методов. Энергия служит мерой прочности связи: чем больше энергия, тем связь прочнее.

Энергия, необходимая для гомолитического расщепления свя­зи на атомы, называется энергией диссоциации. Для двухатомных молекул она равна энергии связи. Энергию диссоциации можно измерить, но в случае сложных молекул часто бывает невозможно оп­ределить энергию диссоциации, необходимую для разрыва отдельной связи. Обычно энергию, необходимую для превращения молекул в атомы, рассчиты­вают по теплоте сгорания, исходя из предположения аддитивности вкладов каждого элемента.

Имеется корреляция между длиной связи и ее энергией: чем длиннее связь, тем меньше энергия и наоборот. Двойные связи прочнее и короче, чем соответствующие одинарные связи, но прочность их не вдвое больше. Это означает, что σ-связь прочнее π-связи. Энергия связи может заметно изменяться в зависимости от ряда факторов, связанных со структурными особенностями. Так, энергия связи С-Н для пер­вичного, вторичного и третичного атома углерода не одинакова. Связь с учас­тием третичного атома углерода наименее прочная, с участием первичного - наиболее прочная.

Полярность связи обусловлена неравномерным распределением электрон­ной плотности. Если атомы, образующие ковалентную связь, равноценны, то пара электронов связи в равной степени принадлежит обоим. Большинство же ковалентных связей образовано неодинаковыми или неравноценными атома­ми. В этом случае электронная плотность может быть смещена. Склонность атомов притягивать электроны харак­теризуется эмпирическим критерием - электроотрицательностью - это способность атома в молекуле притягивать валентные электроны, участвующие в химической связи.

Были предприняты попытки дать количественную оценку электроотрицательности, которая указывала бы направление и степень смещения электронного облака между любыми двумя атомами. Наи­более известна шкала Л. Полинга (1939) на основе энергий связи двухатомных молекул. В некоторых подходах рассчитывалась электроотрицательность для раз­личных состояний гибридизации атома. Известно, что увеличение доли s-орбитали в гибридной АО приводит к увеличению электроотрицательности. Кроме того, рассчитаны электроотрицательности не только для атомов, но и для групп атомов.

Связь, образованная разными по электроотрицательности атомами, будет полярной . Атомы, связанные ей, несут частичные заряды, обо­значаемые δ (дельта). При разности в электроотрицатель­ности атомов связи от 0,5 до 2,0 говорят о сильнополярной связи; если эта раз­ность больше 2,0, то велика степень ионности связи. Смещение электронной плотности полярной σ-связи обозначают прямой стрелкой, совпадающей с ва­лентной чертой, смещение полярной кратной связи - изогнутой стрелкой.

Неравномерное распределение электронной плотности ковалентной связи создает разделение зарядов, характеризуемое дипольным моментом μ. Суммарный дипольный момент молекулы определяют экспериментально. Дипольный момент отдельной связи можно непосредственно измерить только для двухатомных молекул. Молекула более сложного состава рассматривается как система нескольких диполей. Суммар­ный дипольный момент молекулы является векторной суммой моментов свя­зей. В симметрично построенных молекулах (СС1 4 или СО 2) μ = 0, хотя связи характеризуются значитель­ным дипольным моментом. Однако они компенсируют друг друга. Поляр­ность связей в значительной степени определяет реакционную способность и механизм реакций органических соединений.

Поляризуемость связи выражается в смещении электронного облака по отно­шению к ядрам под влиянием внешнего электромагнитного поля. Возникаю­щий при этом индуцированный диполь складывается с постоянным диполем (если он есть). Поляризуемость определяется легкостью смещения электронов связи. Легче поляризуются те связи, максимум электронной плотности которых располагается дальше от связываемых ядер. По поляризуемос­ти π-связь значительно превосходит σ-связь. Поляризуемость в значительной мере определяет реакционную способность молекул, так как смещение электронов тех или иных связей может происхо­дить не только под влиянием электрического поля, но и под влиянием при­ближающейся реагирующей частицы, а также под влиянием растворителей.

Атом водорода, связанный с сильно электроотрицательным атомом (фто­ра, кислорода, азота, хлора), способен взаимодействовать с неподеленной па­рой электронов другого сильно электроотрицательного атома этой же или дру­гой молекулы с образованием дополнительной слабой связи, называемой во­дородной связью.

Электронное облако связи 1 Н с электроотрицательным атомом сильно смещается в сторону этого атома, ос­тавляя ядро 1 Н слабо экранированным. Большой положительный заряд ядра атома 1 Н притягивается отрицательным зарядом другого электро­отрицательного атома. Энергия такого взаимодействия соизмерима с энергией прежней связи, и 1 Н связывается сразу с двумя, при­чем связывание со вторым атомом может быть даже более прочным. В результате протон может переходить от одного электроотри­цательного атома к другому. Энергетический барьер такого перехода невелик. Природа водородной связи имеет электростатический и донорно-акцепторный характер. Водородная связь слабая, лежит в пределах 10-40 кДж/моль, что значительно меньше энергии ковалентной или ионной связи.

Водородная связь играет значительную роль в проявлении многих физи­ческих и химических свойств молекул. Межмолекулярные водородные связи обусловливают ассоциацию многих соединений, например, спиртов, карбоно­вых кислот, что приводит к аномально высоким температурам их кипения. Сольватация ве­ществ посредством образования водородных связей с растворителем резко по­вышает их растворимость. Водородные связи также вносят вклад в стабилиза­цию ионизированных частиц в растворе. Внутримолекулярные водородные связи образуются в том случае, когда возможно замыкание шестичленного и реже пятичленного цикла. Водородные связи играют важнейшую роль в формировании пространст­венной структуры белков, нуклеиновых кислот, полисахаридов, а также в про­текании ряда биохимических процессов (репликация ДНК, синтез мРНК) и во многих случаях обеспечив

Теория химического строения А.М. Бутлерова. Электронное строение атома углерода и виды гибридизации.

В 1861 году А.М. Бутлеровым была предложена теория химического строения органических соединений, которая состоит из следующих основных положений.

1. В молекулах веществ существует строгая последовательность химического связывания атомов, которая называется химическим строением.

2. Химические свойства вещества определяются природой элементарных составных частей, их количеством и химическим строением.

3. Если у веществ с одинаковым составом и молекулярной массой различное строение, то возникает явление изомерии.

4. Так как в конкретных реакциях изменяются только некоторые части молекулы, то исследование строения продукта помогает определить строение исходной молекулы.

5. Химическая природа (реакционная способность) отдельных атомов в молекуле меняется в зависимости от окружения, т.е. от того, с какими атомами других элементов они соединены.

Атом углерода в возбужденном состоянии содержит четыре неспаренных электрона на внешнем энергетическом уровне и способен образовать четыре ковалентных связи.

В образовании связей участвуют гибридные орбитали.

Первое валентное состояние – sp3-гибридизация. В результате гибридизации с участием одной s и трех p орбиталей атома углерода образуются четыре эквивалентные sp3-гибридные орбитали, направленные к вершинам тетраэдра под углами 109,5о:

В состоянии sp3-гибридизации атом углерода образует четыре s -связи с четырьмя заместителями и имеет тетраэдричекую конфигурацию с валентными углами, равными или близкими 109,5о. (например, метан)

Второе валентное состояние – sp2-гибридизация. В результате гибридизации с участием одной s- и двух p-орбиталей атома углерода образуются три эквивалентные sp2-гибридные орбитали, лежащие в одной плоскости под углами 120о, а не участвующая в гибридизации p-орбиталь расположена перпендикулярно плоскости гибридных орбиталей.

В состоянии sp2-гибридизации атом углерода образует три s -связи за счет гибридных орбиталей и одну p -связь за счет не участвующей в гибридизации p-орбитали и имеет три заместителя. (например, этилен)

Третье валентное состояние углерода – sp-гибридизация. В результате гибридизации с участием одной s- и одной p–орбитали образуются две эквивалентные sp-гибридные орбитали, лежащие под углом 1800, а не участвующие в гибридизации p-орбитали расположены перпендикулярно плоскости гибридных орбиталей и друг другу. В состоянии sp-гибридизации атом углерода образует две s -связи за счет гибридных орбиталей и две p -связи за счет не участвующих в гибридизации p-орбиталей и имеет два заместителя. (например, ацетилен)

Понятие о конфигурации молекул. Оптическая, или зеркальная изомерия. Элементы симметрии молекул (ось, плоскость, центр). Ассиметрический атом углерода как центр хиральности. Оптическая активность и удельное вращение веществ.

Молекулы с одним центром хиральности (энантиомерия). Глицериновый альдегид как кон-фигурационный стандарт. Проекционные формулы Фишера. Относительная и абсолютная конфигурация. D-, L- и R-, S-системы. Понятие о рацематах.

Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.

В виде энантиомеров могут существовать только хиральные молекулы.

Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 7.1, а). Такие предметы не могут быть полностью совмещены друг с другом.

В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными (симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают по крайней мере одной плоскостью симметрии, которая делит объект на две зеркальноидентичные части (см. рис. 7.1, б).

Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.

В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.

Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.

При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Для изображения конфигурационных изомеров на плоскости можно пользоваться стереохимическими формулами. Однако удобнее применять более простые в написании проекционные формулы Фишера (проще - проекции Фишера).

Тетраэдрическую модель одного из энантиомеров располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра должны быть направлены к наблюдателю. После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному,. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.

В проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

Проекционную формулу разрешается поворачивать в плоскости рисунка на 180? (что эквивалентно двум перестановкам), но не на 90?.

За конфигурационный стандарт был принят глицериновый альдегид. Его левовращающему энантиомеру была произвольно приписана формула (I). Такая конфигурация атома углерода была обозначена буквой l (от лат. laevus - левый). Правовращающему энантиомеру соответственно была приписана формула (II), а конфигурация обозначена буквой d (от лат. dexter - правый).

Заметим, что в стандартной проекционной формуле l-глицеринового альдегида группа ОН находится слева, а у d-глицеринового альдегида - справа.

Отнесение к d- или l-ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией d- или l-глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у l-глицеринового альдегида, поэтому энантиомер (I) относят к l-ряду. Из тех же соображений энантиомер (II) относят к d-ряду. Так из срав- нения проекций Фишера определяют относительную конфигурацию.

Следует отметить, что l-глицериновый альдегид имеет левое вращение, а l-молочная кислота - правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).

Знак вращения плоскости поляризованного света не связан с принадлежностью к d- или l-стереохимическому ряду.

Практическое определение относительной конфигурации оптически активных соединений проводят с помощью химических реакций: либо исследуемое вещество превращают в глицериновый альдегид (или другое вещество с известной относительной конфигурацией), либо, наоборот, изd- или l-глицеринового альдегида получают исследуемое вещество. Разумеется, что в ходе всех этих реакций не должна изменяться конфигурация асимметрического атома углерода.

Произвольное приписание лево- и правовращающему глицериновому альдегиду условных конфигураций было вынужденным шагом. В то время абсолютная конфигурация не была известна ни для одного хирального соединения. Установление абсолютной конфигурации стало возможным только благодаря развитию физико-химических методов, особенно рентгеноструктурного анализа, с помощью которого в 1951 г. впервые была определена абсолютная конфигура,ция хиральной молекулы - это была соль (+)-винной кислоты. После этого стало ясно, что абсолютная конфигурация d- и l-глицериновых альдегидов действительно такая, какая им была первоначально приписана.

d,l-Система в настоящее время применяется для α-аминокислот, гидроксикислот и (с некоторыми дополнениями) для углеводов

R,S-Система обозначения конфигурации. d,L-Система имеет весьма ограниченное применение, так как часто невозможно соотнести конфигурацию какого-либо соединения с глицериновым альдегидом. Универсальной системой обозначения конфигурации центров хиральности является R,S-система (от лат. rectus - прямой, sinister - левый). В ее основе лежит правило последовательности, основанное на старшинстве заместителей, связанных с центром хиральности.

Старшинство заместителей определяется атомным номером элемента, непосредственно связанного с центром хиральности, - чем он больше, тем старше заместитель.

Так, группа ОН старше NH 2 , которая, в свою очередь, старше любой алкильной группы и даже СООН, поскольку в последней с асимметрическим центром связан атом углерода. Если атомные номера оказываются одинаковыми, старшей считается группа, у которой следующий за углеродом атом имеет больший порядковый номер, причем, если этот атом (обычно кислород) связан двойной связью, он учитывается дважды. В результате следующие группы так располагаются в порядке падения старшинства: -СООН > -СН=О > -СН 2 ОН.

Для определения конфигурации тетраэдрическую модель соединения располагают в пространстве так, чтобы самый младший замес- титель (в большинстве случаев это атом водорода) был наиболее удален от наблюдателя. Если старшинство трех остальных заместителей убывает по часовой стрелке, то центру хиральности приписывают R-конфигурацию (рис. 7.4, а), если против часовой стрелки - S -конфигурацию (см. рис. 7.4, б), как это видно водителю, находящемуся за рулем (см. рис. 7.4, в).

Рис. 7.4. Определение конфигурации энантиомеров молочной кислоты по R,S- системе (объяснение в тексте)

Для обозначения конфигурации по RS-системе можно применить проекции Фишера. Для этого проекцию преобразуют так, чтобы

Вопрос 9

Кислотность и основность органических соединений .

Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и теория Льюиса.

По теории Льюиса кислотные и основ­ные свойства соединений определяются их способностью принимать или отдавать пару электронов с образованием связи. В соответствии с принципом ЖМКО кислоты и основания Льюиса делятся на жесткие и мягкие.

Кислотами Льюиса могут быть атомы, молекулы или катионы, обладающие вакантной орбиталью и способные принимать пару электронов с образованием ковалентной связи.

Кислоты Льюиса – акцепторы пары электронов; основания Льюиса – доноры пары электронов. Основания Льюиса (атом, молекула или анион) должны обладать по крайней мере одной парой валентных электронов, которую они способны предоставить партнеру для образования ковалентной связи. Все основания Льюиса представляют собой нуклеофильные реагенты.

По теории Бренстеда (протолитической теории) кислотность и основность соединений связывается с переносом протона Н + . Кислота и основание образуют сопряженную кислотно-основную пару, в которой чем сильнее кислота, тем слабее сопряжен­ное ей основание, и напротив, чем сильнее основание, тем слабее сопряженная ему кислота.

Кислоты Бренстеда (протонные кислоты) – нейтральные молекулы или ионы, способные отдавать протон (доноры протонов).

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).

Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии кислоты. В качестве растворителя при изучении кислотно-основных равновесий обычно используется вода.

В зависимости от природы элемента, с которым связан про­тон, различают ОН- кислоты (карбоновые кислоты, фенолы, спирты), SH-кислоты (тиолы), NН-кислоты (амины, амиды, имиды), СН-кислоты (углеводороды и их произ­водные). Элемент и связанный с ним атом водорода называют кислотным центром. Во всех случаях присутствует сдвиг электронной плотности от атома водорода к более электроотрицательному атому, протону более или менее легко отщепиться. Чем выше электроотрицательность элемента, с которым связан протон, тем больше кислотность соединения (так, карбоновые кислоты являются более сильными кислотами, чем тиолы или амины).

Наличие в молекуле электроноакцепторных групп, обладающих отрицательными электронными эффектами, увеличивает положительный заряд на протоне, что приводит к усилению кислотных свойств.

Для образования ковалентной связи с протоном основания Бренстеда должны предоставлять либо неподелениую пару электронов, либо электроны p-связи. В соот­ветствии с этим основания Бренстеда делятся на п -основания и p-основания.

n -основания могут быть нейтральными или отрицательно за­ряженными. Как правило, анионы обладают более сильно выра­женным основным характером, чем нейтральные вещества. То есть амид-ион NН 2 – или гидроксид-ион НО – по основности превосходят аммиак NН 3 и воду Н 2 О.

В p-основаниях, к которым относятся алкены, алкадиены, арены, центром основности, т.е. местом присоединения протона, являются электроны p-связи. Это очень слабые основания, так как протонируемые электронные пары несвободны.

Наличие электронодонорных заместителей увеличивает основность органических соединений.

1. Зависимость кислотности от гетероатома.

Под природой гетероатома понимают его электроотрицательность (Э.О.) и поляризуемость. Чем больше (Э.О.) тем легче осуществляется гетеролитический разрыв в молекуле. В периодах слева направо с ростом заряда ядра растет (Э.О), т.е. способность элементов удерживать отрицательный заряд. В результате смещения электронной плотности связь между атомами поляризуется. Чем больше электронов и чем больше радиус атома, тем дальше электроны внешнего энергетического уровня расположены от ядра, тем выше поляризуемость и выше кислотность.

Пример: СН- NH- OH- SH-

увеличение Э.О. и кислотности

С, N,О – элементы одного периода. Э.О. по периоду растет, кислотность увеличивается. В этом случае поляризуемость влиять на кислотность не будет.

Поляризуемость атомов в периоде изменяется незначительно, поэтому главным фактором определяющим кислотность является Э.О.

Теперь рассмотрим ОН- SH-

увел-е кислотности

О, S – находятся в одной группе, радиус в группе сверху вниз увеличивается, следовательно, растет и поляризуемость атома, что ведет к увеличению кислотности. У S радиус атома больше, чем у О, поэтому тиолы проявляют более сильные кислотные свойства по сравнению со спиртами.

2. Влияние углеводородного радикала и присутствующих в нем заместителей

Электроноакцепторные (Э.А.) заместители способствуют делокализации электронной плотности, что ведёт к стабильности аниона и соответственно увеличению кислотности.

Электронодонорные (Э.Д.) заместители наоборот способствуют концентрации электронной плотности в кислотном центре, что ведет к понижению кислотности и увеличению основности.

Влияние растворителя.

Взаимодействие молекул или ионов растворенного вещества с растворителем называется процессом сольватации. Стабильность аниона существенно зависит от его сольватации в растворе: чем больше ион сольватирован, тем он устойчивее, а сольватация тем больше, чем меньше размер иона и чем меньше делокализация в нем отрицательного заряда.

Кислотные свойства

1. С активными металлами:

HO-CH 2 -CH 2 -OH + 2Na → H 2 + NaO-CH 2 -CH 2 -ONa (гликолят натрия)

2. С гидроксидом меди(II) – качественная реакция!

Качественной реакцией на двухатомные и многоатомные спирты (диольный фрагмент) является реакция с Си(ОН)2 в щелочной среде, в результате которой образуется комплексное соединение гликолят меди в растворе, дающем синее окрашивание.

Упрощённая схема

Основные свойства

1. С галогенводородными кислотами

HO-CH 2 -CH 2 -OH + 2HCl H+ ↔ Cl-CH 2 -CH 2 -Cl + 2H 2 O

С азотной кислотой

Тринитроглицерин - основа динамита

Этиленгликольтоксичен – сильный Яд! Угнетает ЦНС и поражает почки.

Глицерин (пропантриол-1,2,3) – не ядовит. Без запаха. Хорошо смешивается с водой. Распространён в живой природе. Играет важную роль в обменных процессах, так как входит в состав жиров (липидов) животных и растительных тканей. Применяется как компонент мазей для смягчения кожи.

Многоатомный циклический спирт инозит относится к витаминоподобным соединениям (витамины группы В) и является структурным компонентом сложных липидов – фосфатидилинозитов.

Этилендиамин применяется для полученияэтилендиаминтетрауксусной кислоты взаимодействием схлоруксусной кислотой . Его соли сжирными кислотами используются как смягчающие агенты при производстве текстиля . Также этилендиамин применяется в производстве красителей ,эмульгаторов , стабилизаторовлатексов , пластификаторов ифунгицидов . Этилендиамин токсичен ; предельно допустимая концентрация его паров в воздухе составляет 0,001 мг/л.

Из полиаминов аиболее известны тетраметилендиамин, или путресцин H2N(CH2)4NH2, и пентаметилендиамин, или кадаверин H2N(CH2)5NH2. Их долгое время считали трупными ядами, т.е. веществами, образующимися при декарбоксилировании диаминокислот и обусловливающими ядовитость гниющих белков.

12. Фенолы.Общая характеристика.

Электронное строение карбонильной группы. Реакции нуклеофильного присоединения АN по карбонильной группе. Реакции присоединения воды, синильной кислоты, спиртов, би-сульфита натрия. Механизм альдольной конденсации и реакции Канницаро.



Строение карбонильной группы C=O.

· Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Связь С=О сильно полярна. Ее дипольный момент значительно выше, чем у связи С–О в спиртах. Электроны кратной связи С=О, в особенности более подвижные p-электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

· Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н + .

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С 2 –C 5 и кетоны С 3 –С 4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Нуклеофильное присоединение

Для альдегидов и кетонов наиболее характерны реакции нуклеофильного присоединения A N .

Общее описание механизма нуклеофильного присоединения A N

Легкость нуклеофильной атаки по атому углерода карбонильной группы альдегида или кетона зависит от величины частичного

положительного заряда на атоме углерода, его пространственной доступности и кислотно-основных свойств среды.

С учетом электронных эффектов групп, связанных с карбонильным атомом углерода, величина частичного положительного заряда δ+ на нем в альдегидах и кетонах убывает в следующем ряду:

Пространственная доступность карбонильного атома углерода уменьшается при замене водорода более объемистыми органиче- скими радикалами, поэтому альдегиды более реакционноспособны, чем кетоны.

Общая схема реакций нуклеофильного присоединения A N к карбонильной группе включает нуклеофильную атаку по карбонильному атому углерода, за которой следует присоединение электрофила к атому кислорода.

В кислой среде активность карбонильной группы, как правило, увеличивается, поскольку вследствие протонирования атома кислорода на атоме углерода возникает положительный заряд. Кислотный катализ используют обычно тогда, когда атакующий нуклеофил обладает низкой активностью.

По приведенному выше механизму осуществляется ряд важных реакций альдегидов и кетонов.

Присоединение спиртов. Спирты при взаимодействии с альдегидами легко образуют полуацетали. Полуацетали обычно не выделяют из-за их неустойчивости. При избытке спирта в кислой среде полуацетали превращаются в ацетали.

Применение кислотного катализатора при превращении полуацеталя в ацеталь становится понятным из приведенного ниже механизма реакции. Центральное место в нем занимает образование карбо- катиона (I), стабилизированного за счет участия неподеленной пары электронов соседнего атома кислорода (+M-эффект группы С 2 Н 5 О).

Реакции образования полуацеталей и ацеталей обратимы, поэтому ацетали и полуацетали легко гидролизуются избытком воды в кислой среде. В щелочной среде полуацетали устойчивы, так как алкоксидион является более трудно уходящей группой, чем гидроксид-ион.

Присоединение воды. Присоединение воды к карбонильной группе - гидратация - обратимая реакция. Степень гидратации альдегида или кетона в водном растворе зависит от строения субстрата.

Трихлороуксусный альдегид (хлораль) гидратирован полностью. Электроноакцепторная трихлорометильная группа настолько стабилизирует хлоральгидрат, что это кристаллическое вещество отщепляет воду только при перегонке в присутствии дегидратирующих веществ - серной кислоты и др.

Присоединение аминов и их производных. Амины и другие азотсодержащие соединения общей формулы NH2X (X = R, NHR) реагируют с альдегидами и кетонами в две стадии. Сначала образуются продукты нуклеофильного присоединения, которые затем вследствие неустойчивости отщепляют воду. В связи с этим данный процесс в целом классифицируют как реакцию присоединения-отщепления.

В случае первичных аминов получаются замещенные имины (их называют также основаниями Шиффа).

Имины - промежуточные продукты многих ферментативных процессов. Получение иминов проходит через стадию образования аминоспиртов, которые бывают относительно устойчивы, например при взаимодействии формальдегида с α-аминокислотами (см. 12.1.4).

Имины являются промежуточными продуктами получения аминов из альдегидов и кетонов путем восстановительного аминирования. Этот общий способ заключается в восстановлении смеси карбонильного соединения с аммиаком (или амином). Процесс протекает по схеме присоединения-отщепления с образованием имина, который затем восстанавливается в амин.

При взаимодействии альдегидов и кетонов с производными гидразина получаются гидразоны. Эту реакцию можно использовать для выделения альдегидов и кетонов из смесей и их хроматографической идентификации.


Основания Шиффа и другие подобные соединения легко гидролизуются водными растворами минеральных кислот с образованием исходных продуктов.

Образование бисульфитных соединений Присоединением молекулы кислого сернистокислого натрия(бисульфита) получаются так называемые бисульфитные соединения, причем водород присоединяется ккислороду карбонильной группы, а остаток SO 2 ONa - к углеродному атому:

В бисульфитных соединениях атом серы непосредственно связан с углеродом.

КАННИЦЦАРО РЕАКЦИЯ , окислит.-восстановит. диспропорционирование альдегидов под действием щелочис образованием первичных спиртов и карбоновых к-т, напр.:


Предполагаемый механизм Канниццаро реакции в гомог. среде включает стадию гидридного переноса


Для ароматич. альдегидов не исключена возможность участия в Канниццаро реакции анион-радикалов, образующихся в результате одноэлектронного переноса. Р-ция, подобная Канниццаро реакции, осуществляется при внутримол. диспропорционировании a-кетоальдегидов в присут. щелочей(перегруппировка Канниццаро):

Дезаминирование,

Внутримолекулярное дезаминирование

R-CH 2 – CH(NH 2) - COOH→ R- CH=CH-COOH + NH 3

α,β – ненасыщенная кислота

Гидролитическое дезаминирование

R-CH(NH 2) – COOH +H 2 O → R – CH(OH) – COOH + NH 3

α - оксикислота

Окислительное дезаминирование

R-CH(NH 2) – COOH +1/2 O 2 → R –C(O) – COOH + NH 3

α-кетокислота

Образование комплексов с металлами. α-Аминокислоты образуют с катионами тяжелых металлов внутрикомплексные соли. Со свежеприготовленным гидроксидом меди(II) все α-аминокислоты в мягких условиях дают хорошо кристаллизующиеся внутрикомплексные (хелатные) соли меди(II) синего цвета:

В таких солях ион меди координационными связями соединен с аминогруппами.

Образование пептидной связи.

Межмолекулярное взаимодействие -аминокислот приводит к образованию пептидов. При взаимодействии двух -аминокислот образуется дипептид.

Межмолекулярное взаимодействие трех -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH - пептидной связью.

22. Декарбоксилирование α-аминокислот – образование биогенных аминов и биорегуляторов (гиста-мин, триптамин).
Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию - отщеплению ос-карбоксильной группы. В тканях млекопитающих декарбоксилированию может подвергаться целый ряд аминокислот или их производных: Три, Тир, Вал, Гис, Глу, Цис, Apr и др. Продуктами реакции являются СО 2 и амины, которые оказывают выраженное биологическое действие на организм (биогенные амины):

Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами. Простетическая группа декарбоксилаз в клетках животных - пиридоксальфосфат.

Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются биологически активными веществами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Гистамин образуется при декарбоксилировании аминокислоты гистидина. Он синтезируется в тучных клетках, накапливается в секреторных гранулах, выделяется при раздражении клеток.

Гистамин оказывает разнообразные биологические эффекты: вызывает расширение сосудов, снижает артериальное давление, увеличивает тканевую проницаемость, вызывает местный отёк, стимулирует желудочную секрецию, обладает бронхоспатическим эффектом. В высокой концентрации он является медиатором воспалительных и аллергических реакций.

Серотонин образуется при декарбоксилировании гидрокситриптофана. Он синтезируется в хромаффиннных клетках, в некоторых ядрах подкорковых структур, тромбоцитах.

Эффекты серотонина: вызывает спазм сосудов, повышение артериального давления, стимулирует перистальтику кишечника, участвует в терморегуляции, в механизмах сна, является источником для синтеза гормона мелатонина, влияет на психические реакции человека. Так, при шизофрении наблюдается нарушение обмена серотонина.

Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.

Дофамин – возбуждающий медиатор, при его дефиците развивается болезнь Паркинсона (адинамия, ригидность, тремор). Адреналин вызывает спазм сосудов, повышают артериальное давление, стимулирует работу сердца, является гормоном.

Норадреналин в основном выполняет нейромедиаторные функции.

Полиамины (спермин, спермидин) синтезируются из орнитина и метионина, входят в состав хроматина, участвует в регуляции процессов трансляции, транскрипции, репликации.

Так как биогенные амины очень активны, они быстро инактивируются в тканях. Распад биогенных аминов осуществляется несколькими способами: окисление, метилирование, дезаминирование. Основным способом инактивации биогенных аминов является окислительное дезаминирование под действием ферментов аминооксидаз (моноаминооксидаз, полиаминооксидаз).

Аминокислоты могут ковалентно связы­ваться друг с другом с помощьюпептидных свя­зей. Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH-R связь, называемая пептидной связью. При этом происходит отщепление мо­лекулы воды.

O- и N-глюкозиды. Гидролиз глюкозидов. Фосфаты моносахаридов. Ацилирование аминосаха-ров. Окисление моносахаридов. Получение озазонов глюкозы. Восстановительные свойства аль-доз. Ксилит, сорбит. Аскорбиновая кислота.

Гликозиды – производные циклич.форм углеводов, в которых полуацетальная гидроксильная группа заменена группой ОR.

Неуглевод.комонент – агликон. Связь между аномерным центром и группой –ОR – гликозидная.

Подразделяют на пиранозиды фуранозиды.

Гликозиды глюкозы называют глюкозидами, рибозы – рибозидами и т.д.

ГЛИКОЗИДЫ

с а х а р агликон

(чаще моносахарид) (спирт, ароматич.соед., стероиды и т.д.)

Гликозид синигрин; гидролиз:

Гликозид ванилина; гидролиз:

Фосфаты моносахарид.

Большое значение имеют эфиры фосфорной кислоты – фосфаты. Они содержатся во всех растительных и животных организмах и представляют собой метаболически активные формы моносахаридов. Наиболее важную роль играют фосфаты D-глюкозы и D-фруктозы.

Окисление глюкозы внейтральной, слабо-кислой среде:

Окисление с помощью сильного окислителя:

Окисление глюкозы в щелочной среде.

Р-ция Толленса:

Представляет собой γ-лактон кислоты.

Содержится во фруктах, особенно в цитрусовых, ягодах(шиповникэ, черная смородина), овощах, молоке.

Проявляет сильные кислотные свойства

за счет одной из гидроксильных групп ендиольного фрагмента.

При образовании солей γ-лактонное кольцо не размыкается.

Обладает сильными восстановительными свойствами. Образующаяся при ее окислении дегидроаскорбиновая кислота легко восстанавливается в аскорбиновую. Этот процесс обеспечивает ряд окислительно-восстановительных реакции в организме.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация