Коническая поверхность. Поверхности вращения. К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения

Главная / Квартира

Конус вращения представляет собой частный случай, когда его ось вращения / _L Определитель конуса вращения выражается формулой Ф (/", /), где / - прямолинейная образующая (рис. 152).

Построение точки на поверхности конуса является, как известно, простейшей задачей. Для построения недостающей проекции точки нужно провести линию на поверхности через эту точку. Для поверхностей вращения эти линии являются прямолинейными (для конуса - /) или криволинейными меридианами и круговыми параллелями р. Непрерывное множество меридианов образует непрерывный каркас прямолинейных образующих поверхности конуса. Проекции точек, принадлежащих поверхности конуса, удобно строить с помощью параллелей и меридианов. Если точки Nn М принадлежат образующей конуса SM, совпадающей на фронтальной плоскости проекций П 2 с проекцией оси / 2 , то на горизонтальной плоскости проекций n t следует их строить с помощью параллелир (рис. 152, а). Точно так же для повышения точности графического построения можно построить с помощью параллели р точку А, определенную на эпюре с помощью образующей АВ (рис. 152, б).

Рис. 152

Линии, которые образуются при пересечении поверхности прямого конуса с плоскостью, называются коническими сечениями.

Если плоскость, пересекающая прямой конус вращения, параллельна горизонтальной плоскости проекций П 1? то в сечении конической поверхности будет окружность, т.е. кривая идет по параллели. При пересечении плоскостью, которая не параллельна ни одной из его образующих, в сечении получится эллипс (рис. 153).

Фронтально проецирующая плоскость Е на фронтальной плоскости проекций П 2 рассекает конус по проекции большой оси 1 2 -2 2

Рис. 153

эллипса. Она проецируется без искажений. Точки 1 и 2 являются опорными. Через середину большой оси эллипса проведена вспомогательная секущая плоскость (3 || flj - горизонтальная плоскость уровня, пересекающая конус по параллели р". Эта параллель проецируется на Щ в натуральную величину. Проекционная линия связи в пересечении с проекцией параллели р" отметит на П j малую ось эллипса 3J-4J. На П! она проецируется в натуральную величину. Для построения промежуточных точек 5 и 6 кривой сечения вводим дополнительную секущую горизонтальную плоскость уровня у || П,.

Точки 7 и 8 построены как симметричные точкам 5 и 6 относительно малой оси 3-4 эллипса. Натуральная величина кривой сечения эллипса построена при помощи способа замены плоскостей проекций П,/П 2 -> П 2 /П 4 .

Если секущая плоскость - фронтально проецирующая плоскость I ± П 2 - параллельна одной образующей конуса, то в сечении конуса получается парабола (рис. 154).

Опорные точки 1 - вершина парабола, точки 2 и 3 - следы параболы на плоскости у основания конуса. На рис. 154 показана вспомогательная секущая плоскость уровня (3, с помощью которой построены промежуточные точки 4 и 5 аналогично алгоритму построения эллиптического сечения. Натуральная величина параболы построена с помощью способа замены плоскостей проекций.


Рис. 154 146

Гиперболическое сечение конуса получается, если секущая плоскость Е _L П 2 параллельна двум образующим конуса. При прохождении такой плоскости через вершину конуса точку S гипербола вырождается в две прямые (образующие конуса). Секущая плоскость Е параллельна двум образующим конуса SA и SB и пересекает конус по гиперболе (рис. 155).

Рис. 155

Секущая плоскость? пересекает коническую поверхность таким образом, что в сечении получаются две ветви гиперболы, имеющие одну действительную ось i и другую мнимую, перпендикулярную к i ось у. В точке О гипербола имеет две взаимно перпендикулярные асимптоты, которые касаются ветвей гиперболы в двух бесконечно удаленных точках и принадлежат плоскости гиперболы. Асимптоты гиперболы параллельны образующим SA и SB конуса. Проводим горизонтальную плоскость уровня Р || П] и строим точки 5 и 6. Далее строим точки 7 и 8 как симметричные точкам 5 и 6 относительно мнимой оси гиперболы j. Натуральную величину ветвей гиперболы строят с помощью замены плоскостей проекций.

\[{\Large{\text{Цилиндр}}}\]

Рассмотрим окружность \(C\) с центром \(O\) радиуса \(R\) на плоскости \(\alpha\) . Через каждую точку окружности \(C\) проведем прямую перпендикулярно плоскости \(\alpha\) . Поверхность, образованная этими прямыми, называется цилиндрической поверхностью .
Сами прямые называются образующими данной поверхности.

Проведем теперь через некоторую точку некоторой образующей плоскость \(\beta\parallel \alpha\) . Множество точек, по которым образующие пересекут плоскость \(\beta\) , образует окружность \(C"\) , равную окружности \(C\) .
Часть пространства, ограниченная двумя кругами \(K\) и \(K"\) с границами \(C\) и \(C"\) соответственно, а также частью цилиндрической поверхности, заключенной между плоскостями \(\alpha\) и \(\beta\) , называется цилиндром .

Круги \(K\) и \(K"\) называются основаниями цилиндра; отрезки образующих, заключенных между плоскостями, – образующими цилиндра; часть цилиндрической поверхности, образованная ими, - боковой поверхностью цилиндра. Отрезок, соединяющий центры оснований цилиндра равен образующей цилиндра и равен высоте цилиндра (\(l=h\) ).

Теорема

Площадь боковой поверхности цилиндра равна \

где \(R\) – радиус основания цилиндра, \(h\) – высота (образующая).

Теорема

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей обоих оснований \

Теорема

Объем цилиндра вычисляется по формуле \

\[{\Large{\text{Конус}}}\]

Рассмотрим плоскость \(\alpha\) и на ней окружность \(C\) с центром \(O\) и радиусом \(R\) . Через точку \(O\) проведем прямую, перпендикулярную плоскости \(\alpha\) . Отметим на этой прямой некоторую точку \(P\) . Поверхность, образованная всеми прямыми, проходящими через точку \(P\) и каждую точку окружности \(C\) , называется конической поверхностью , а эти прямые – образующими конической поверхности. Часть пространства, ограниченная кругом с границей \(C\) и отрезками образующих, заключенными между точкой \(P\) и точкой на окружности, называется конусом . Отрезки \(PA\) , где \(A\in \text{окр. } C\) , называются образующими конуса ; точка \(P\) – вершина конуса; круг с границей \(C\) – основание конуса; отрезок \(PO\) – высота конуса.


Замечание

Заметим, что у конуса высота и образующая не равны друг другу, как было в случае с цилиндром.

Теорема

Площадь боковой поверхности конуса равна \

где \(R\) – радиус основания конуса, \(l\) – образующая.

Теорема

Площадь полной поверхности конуса равна сумме площади боковой поверхности и площадей основания \

Теорема

Объем конуса вычисляется по формуле \

Замечание

Заметим, что цилиндр в каком-то смысле является призмой, только в основании находится не многоугольник (как у призмы), а круг.
Формула объема цилиндра такая же, как и формула объема призмы: произведение площади основания на высоту.

Аналогично конус в каком-то смысле является пирамидой. Поэтому формула объема конуса такая же, как и у пирамиды: треть площади основания на высоту.

\[{\Large{\text{Сфера и шар}}}\]

Рассмотрим множество точек пространства, равноудаленных от некоторой точки \(O\) на расстояние \(R\) . Это множество называется сферой с центром в точке \(O\) радиуса \(R\) .
Отрезок, соединяющий две точки сферы и проходящий через ее центр называется диаметром сферы.

Сфера вместе со своей внутренностью называется шаром .


Теорема

Площадь сферы вычисляется по формуле \

Теорема

Объем шара вычисляется по формуле \

Определение

Шаровой сегмент – это часть шара, отсекаемая от него некоторой плоскостью.
Пусть плоскость пересекла шар по кругу \(K\) с центром в точке \(Q\) . Соединим точки \(O\) (центр шара) и \(Q\) и продлим этот отрезок до пересечения со сферой – получим радиус \(OP\) . Тогда отрезок \(QP\) называется высотой сегмента.


Теорема

Пусть \(R\) – радиус шара, \(h\) – высота сегмента, то объем шарового сегмента равен \

Определение

Шаровой слой – это часть шара, заключенная между двумя параллельными плоскостями, пересекающими этот шар. Круги, по которым плоскости пересекают шар, называются основаниями шарового слоя, отрезок, соединяющий центры оснований – высотой шарового слоя.
Две оставшиеся части шара являются в этом случае шаровыми сегментами.

Объем шарового слоя равен разности объема шара и объемов шаровых сегментов с высотами \(AP\) и \(BT\) .

Поверхности вращения и ограничиваемые ими тела имеют широкое применение во многих областях техники: баллон электронно-лучевой трубки (рис. 8.11, а), центр токарного станка (рис. 8.11, б), объемный сверхвысокочастотный резонатор электромагнитных колебаний (рис. 8.11, в), сосуд Дьюара для хранения жидкого воздуха (рис. 8.11, г), коллектор электронов мощного электронно-лучевого прибора (рис. 8.11, д) и т.д.

В зависимости от вида образующей поверхности вращения могут быть линейчатыми, нелинейчатыми или состоять из частей таких поверхностей.

Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии вокруг неподвижной прямой- оси поверхности.


На чертежах ось изображают штрихпунктирной линией. Образующая линия может в общем случае иметь как криволинейные, так и прямолинейные участки. Поверхность вращения на чертеже можно задать образующей и положением оси. На рисунке 8.12 изображена поверхность вращения, которая образована вращением образующей AьCD (ее фронтальная проекция a"b"c"d") вокруг оси OO 1 (фронтальная проекция о"o 1 " , перпендикулярной плоскости Н. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно линия пересечения поверхности вращения любой плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями. На виде сверху (рис. 8.12) показаны проекции окружностей, описываемых точками А, В, С и D, проходящие через проекции а, b, с, d. Наибольшую параллель из двух соседних с нею параллелей по обе стороны от нее называют экватором, аналогично наименьшую - горлом.

Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Если ось поверхности параллельна плоскости проекций, то меридиан, лежащий в плоскости, параллельной этой плоскости проекций, называют главным меридианом. На эту плоскость проекций главный меридиан проецируется без искажений. Так, если ось поверхности вращения параллельна плоскости V, то главный меридиан проецируется на плоскость V без искажений, например проекция a"f"b"c"d". Если ось поверхности вращения перпендикулярна к плоскости Н, то горизонтальная проекция поверхности имеет очерк в виде окружности.

Наиболее удобными для выполнения изображений поверхностей вращения являются случаи, когда их оси перпендикулярны к плоскости Н, к плоскости V или к плоскости W.

Некоторые поверхности вращения являются частными случаями поверхностей, рассмотренных в 8.1, например цилиндр вращения, конус вращения. Для цилиндра и конуса вращения меридианами являются прямые линии. Они параллельны оси и равноудалены от нее для цилиндра или пересекают ось в одной и той же ее точке под одним и тем же углом к оси для конуса. Цилиндр и конус вращения - поверхности, бесконечные в направлении их образующих; поэтому на изображениях их ограничивают какими-либо линиями, например линиями пересечения этих поверхностей с плоскостями проекций или какими-либо из параллелей. Из стереометрии известно, что прямой круговой цилиндр и прямой круговой конус ограничены поверхностью вращения и плоскостями, перпендикулярными к оси поверхности. Меридиан такого цилиндра - прямоугольник, конуса - треугольник.

Такая поверхность вращения, как сфера, является ограниченной и может быть изображена на чертеже полностью. Экватор и меридианы сферы - равные между собой окружности. При ортогональном проецировании на все три плоскости проекций очертания сферы проецируются в окружность.

Тор. При вращении окружности (или ее дуги) вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, получается поверхность с названием тор. На рисунке 8.13 приведены: открытый тор, или круговое кольцо, - рисунок 8.13, а, закрытый тор - рисунок 8.13, б, самопересекающийся тор - рисунок 8.13, в, г. Тор (рис. 8.13, г) называют также лимоновидным. На рисунке 8.13 они изображены в положении, когда ось тора перпендикулярна к плоскости проекций Н. В открытый и закрытый торы могут быть вписаны сферы. Тор можно рассматривать как поверхность, огибающую одинаковые сферы, центры которых находятся на окружности.

В построениях на чертежах широко используют две системы круговых сечений тора: в плоскостях, перпендикулярных к его оси, и в плоскостях, проходящих через ось тора. При этом в плоско-

стях, перпендикулярных к оси тора, в свою очередь имеются два семейства окружностей - линий пересечения плоскостей с наружной поверхностью тора и линий пересечения плоскостей с внутренней поверхностью тора. У лимоновидного тора (рис. 8.13, г) имеется только первое семейство окружностей.

Кроме того, тор имеет еще и третью систему круговых сечений, которые лежат в плоскостях, проходящих через центр тора и касательных к его внутренней поверхности. На рисунке 8.14 показаны круговые сечения с центрами о 1р и о 2р на дополнительной плоскости проекций Р, образованные фронтально-проецирующей плоскостью Q (Q v), проходящей через центр тора с проекциями о" о и касательной к внутренней поверхности тора в точках с проекциями 1" , 1, 2" 2. Проекции точек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 облегчают чтение чертежа. Диаметр d этих круговых сечений равен длине больших осей эллипсов, в которые проецируются круговые сечения на горизонтальной плоскости проекций: d = 2R.

Точки на поверхности вращения. Положение точки на поверхности вращения определяют по принадлежности точки линии каркаса поверхности, т. е. с помощью окружности, проходящей через эту точку на поверхности вращения. В случае линейчатых поверхностей для этой цели возможно применение и прямолинейных образующих.

Применение параллели и прямолинейной образующей для построения проекций точек, принадлежащих данной поверхности вращения, показано на рисунке 8.12. Если

дана проекция т", то проводят фронтальную проекцию f"f1" параллели, а затем радиусом R проводят окружность - горизонтальную проекцию параллели - и на ней находят проекцию т. Если бы была задана горизонтальная проекция т, то следовало бы провести радиусом R=om окружность, по точке f построить f" и провести f"f1" - фронтальную проекцию параллели - и на ней в проекционной связи отметить точку т". Если дана проекция п" на линейчатом (коническом) участке поверхности вращения, то проводят фронтальную проекцию d"s" очерковой образующей и через проекцию n" - фронтальную проекцию s"к" образующей на поверхности конуса. Затем на горизонтальной проекции sk этой образующей строят проекцию n. Если бы была задана горизонтальная проекция n, то следовало бы провести через нее горизонтальную проекцию sk образующей, по проекции к" и s" (построение ее было рассмотрено выше) построить фронтальную проекцию s "к" и на ней в проекционной связи отметить проекцию n"

На рисунке 8.15 показано построение проекций точки К, принадлежащей поверхности тора. Следует отметить, что построение выполнено для видимых горизонтальной проекции к и фронтальной проекции к".

На рисунке 8.16 показано построение по заданной фронтальной проекции т" точки на поверхности сферы ее горизонтальной т и профильной т" проекций. Проекция т построена с помощью окружности - параллели, проходящей через проекцию т". Ее радиус - о-1. Проекция т "" построена с помощью окружности, плоскость которой параллельна профильной плоскости проекций, проходящей через проекцию т". Ее радиус о "2".

Построение проекций линий на поверхности вращения может быть выполнено также при помощи окружностей - параллелей, проходящих через точки, принадлежащие этой линии.

На рисунке 8.17 показано построение горизонтальной проекции aь линии, заданной фронтальной проекцией a"b" на поверхности вращения, состоящей из частей поверхностей сферы, тора, конической. Для более точного вычерчивания горизонтальной проекции линии продолжим ее фронтальную проекцию вверх и вниз и отметим проекции 6" и 5" крайних точек. Горизонтальные проекции 6, 1, 3, 4, 5 построены с помощью линий связи. Проекции b , 2, 7, 8, а построены с помощью параллелей, фронтальные проекции которых проходят через проекции b " 2", 7", 8", а" этих точек. Количество и расположение промежуточных точек выбирают исходя из формы линии и требуемой точности построения. Горизонтальная проекция линии состоит из участков: b -1 - части эллипса,

Поверхности вращения – поверхности, образованные вращением произвольной образующей вокруг неподвижной оси (рис. 51, а). Направляющей поверхности вращения является окружность постоянного (цилиндр) или переменного радиуса (конус, сфера). Нормальное – перпендикулярное оси вращения сечение любой поверхности вращения, представляет собой окружность с центром на ее оси.

Рис. 51. Поверхность вращения: а – основные линии на поверхности вращения; б – представление поверхности вращения в виде сети

Направляющие называют также параллелями поверхности вращения. Плоскости параллелей перпендикулярны к оси поверхности. Наибольшую из параллелей называют экватором поверхности, наименьшую – горлом. Плоскости, проходящие через ось поверхности вращения, называют меридиональными, а линии, по которым они пересекают поверхность – меридианами. Поверхность вращения можно представить параллелями или меридианами поверхности, а также сетью, состоящей из параллелей и меридианов (рис. 51, б).

Поверхность вращения называют закрытой, если меридиональное сечение поверхности является замкнутой кривой линией, пересекающей ось поверхности в двух точках.

При вращении вокруг оси плоской или пространственной алгебраической кривой n-го порядка образуется алгебраическая поверхность вращения, в общем случае, 2n–го порядка. Если кривая второго порядка вращается вокруг своей оси, то она образует поверхность второго порядка.

В зависимости от вида образующей различают:

Торовые поверхности – поверхности, образованные вращением окружности или дуги окружности:




Рис. 52. Торовые поверхности: а – сфера; b – открытый тор (кольцо); c – закрытый тор; d – глобоид

  • Сфера образуется вращением окружности вокруг оси, проходящей через ее центр (рис. 52, а).
  • Тор образуется вращением окружности вокруг оси, лежащей в плоскости этой окружности и не проходящей через ее центр (тор является поверхностью четвертого порядка). Различают открытый тор , образованный вращением окружности вокруг оси, которая не пересекает образующую (рис. 52, б) и закрытый тор , образованный вращением окружности вокруг оси, которая пересекает образующую окружность или касается ее (рис. 52, в).
  • Глобоид образуется вращением окружности достаточно большого радиуса вокруг оси, которая не пересекает образующую (рис. 52, г).

Эллипсоид вращения образуется вращением эллипса вокруг его оси. Если за ось вращения принята большая ось эллипса, эллипсоид вращения называют вытянутым (рис. 53. а), если малая – сжатым или сфероидом (рис. 53, б). Земной шар, например, по форме близок к сфероиду



Рис. 53. Поверхности вращения: а – вытянутый эллипсоид; б – сфероид

Параболоид вращения образуется вращением параболы вокруг ее оси (рис. 54). Параболоиды вращения используются в качестве отражающей поверхности в прожекторах и фарах автомобилей для получения параллельного светового пучка.


Рис. 54. Параболоид вращения

Гиперболоид вращения образуется вращением гиперболы. Различают однополостный гиперболоид (рис. 55, а), образованный вращением гиперболы вокруг ее мнимой оси, и двуполостный гиперболоид (рис. 55, б), образованный вращением гиперболы вокруг ее действительной оси.

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямой i - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющей а следует взять окружность, а в качестве прямой b - ось i (рис.3.16). Тогда получим, что образующая l , параллельная оси i , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то на П 1 цилиндрическая поверхность проецируется в окружность, а на П 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующую l вокруг оси i . При этом образующая l пересекает ось i в точке S , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярной П 1 , то на П 1 коническая поверхность проецируется в круг, а на П 2 - в треугольник.



Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью. Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения. Принадлежность линии поверхности. Основное положение: линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности. Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ .При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур. Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом. Параболу - если плоскость параллельна одной из образующих конуса. Гиперболу - если плоскость параллельна оси или двум образующим конуса. Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника. Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β. Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

№13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация