Защита от источников тепловых излучений отопление. Защита от тепловых излучений

Главная / Авто

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Введение

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т.е. при соприкосновении с поверхностями нагретых тел. Превышение температуры воздуха в помещении выше оптимальной вызывает нарушение нормальной терморегуляции организма и может быть причиной расстройства сердечно-сосудистой системы.

Прогресс в металлургии связан с интенсификацией процессов, укрупнением агрегатов, увеличением их тепловой мощности, что приводит к увеличению избыточных тепловыделений в горячих цехах. Теплонапряженность этих помещений составляет 290--350 Вт/м3, но уже при 23 Вт/м3 цех, согласно СН 245--71, считается горячим.

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с t > 33 °С) и окружающими предметами (эта стадия в металлургических цехах отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного), между нагретыми облучением телами и воздухом (в этой стадии преобладает конвекция). При температуре источников тепловыделений более 50 °С, что характерно для металлургии, в теплообмене преобладает излучение. Поэтому для обеспечения нормальных условий труда металлургов снижение теплоизлучений является основной задачей.

1. Источники и характеристики тепловых излучений

К числу горячих цехов с терморадиационным режимом (преобладает лучистый теплообмен) относятся доменные, сталеплавильные и прокатные цехи заводов черной металлургии, электролизные цехи алюминиевых заводов и плавильные цехи заводов цветной металлургии, кузнечно-прессовые и литейные цехи машиностроительных предприятий. Пространство горячего цеха заполнено излучением от стационарных агрегатов и подвижных источников: ковшей с металлом, заготовок и изделий.

Каждый источник теплоты создает в пространстве поле излучения, независимое от взаимного положения источников. Поля излучений, распространяясь в пространстве, накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом, она превращается в тепловую в поверхностных слоях облучаемого тела.

Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит, в первую очередь, от температуры источника. Энергия тепловых излучений металлургических источников располагается главным образом в инфракрасном диапазоне спектра.

Производственные источники лучистого тепла по характеру излучения можно разделить на 4 группы:

1. Источники с температурой поверхности до 500 С (паропроводы, наружная поверхность нагревательных, плавильных, обжиговых печей, сушил, парогенераторов и водогрейных котлов, выпарных аппаратов, теплообменников и др.). Их спектр содержит исключительно длинные инфракрасные лучи с длиной волны =3,79,3 мкм.

2. Поверхности с температурой t = 500 1200 С (внутренние поверхности печей, горнов, топок парогенераторов, расплавленные шлаки и металл и др.) Их спектр содержит преимущественно длинные инфракрасные лучи, но появляются и видимые лучи.

3. Поверхности с t = 1200 1800 С (расплавленный металл и шлаки, пламя, разогретые электроды и др.) Их спектр инфракрасные лучи вплоть до наиболее коротких, а также видимые, которые могут достигать высокой яркости.

4. Источники с t 1800 С (дуговые печи, сварочные аппараты и др.). Их спектр излучения содержит наряду с инфракрасными и световыми лучами, ультрафиолетовые лучи.

Таблица 1. Характеристики источников излучения

Источники излучения

t, о С, излучения

л,мкм, ИК излучения

Спектральная характеристика излучения

Наружные поверхности печей, остывающие изделия

ИК (Е ик =100%)

Внутренние поверхности печей, пламя, нагретые заготовки

ИК,В (Е в < 0,1%)

Расплавленный металл, разогретые электроды

ИК,В (Е в < 1%)

Пламя дуговых печей, сварочные аппараты

(Е у ф < 0,1%)

Интенсивность теплового излучения зависит от температуры и площади источника и степени черноты его поверхности. Для рассмотрения аналитических зависимостей по лучистому теплообмену обратимся к законам теплового излучения.

При теплообмене излучением между двумя а.ч.т. с температурами Т 1 и Т 2 тепловой поток, Вт, рассчитывается по формуле:

Q = С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 ц 12 , где

Т 1 ,Т 2 - температуры тел 1 и 2 соответственно, К;

F 1 -- площадь поверхности тела 1;

ц 12 = 0ч1 -- коэффициент облученности, который показывает, какая часть лучистого потока, излучаемого телом 1, попадает на тело 2 (ц 12 часто определяют по графикам).

Тепловой поток при теплообмене между серыми телами:

Q = е пр С о [ (Т 1 /100) 4 - (Т 2 /100) 4 ]F 1 ц 12 , где

е пр = (е 1 -1 + е 2 -1 -1) -1 - приведенная степень черноты серых тел.

Плотность теплового потока на расстоянии l от точечного источника обратно пропорциональна квадрату расстояния: q = Q/ l 2 .

2. Воздействие на организм тепловых излучений

тепловое излучение организм защита

Терморадиационный режим в горячих цехах характеризуется облученностью от стационарных и подвижных источников.

Рассеянное излучение от первичных и вторичных источников создает фоновую облученность. Абсолютное количество тепловыделений подвижных источников при формировании терморадиационного режима цеха невелико, но эти источники оказывают значительное влияние на отдельные рабочие места.

Интенсивность теплового облучения рассчитывают на основании уравнений для Q и е пр, имея в виду, что Т 1 и е 1, Т 2 и е 2 - соответственно температура и степень черноты источника, кожи и одежды человека. Интенсивность облучения человека, Вт/м 2 , от нагретой поверхности рекомендуется определять по формуле:

с = е пр С о [(Т/100) 4 - А]соsб, где

е пр - приведенная степень черноты серых тел;

С о = 5,67 Вт/(м 2 *К 4) - коэффициент излучения а.ч.т.;

Т - температура источника, К;

А = 85 (при t 2 = 31 °С) -- для кожи и хлопчатобумажной ткани,

А = 110 (при U = 51 о С) -- для сукна;

б -- угол между нормалью к излучающей поверхности и направлением от ее центра к рабочему месту,

cosб - поправка на смещение работающего от линии, перпендикулярной к центру излучающей поверхности.

Часто этот расчет затруднен ввиду сложности определения коэффициента облученности ц и приведенной степени черноты е пр. Если человек находится вблизи большой, по сравнению с его размерами излучающей поверхности F, то ц = 1, а интенсивность облучения с не зависит от расстояния l от источника. Если, излучающая поверхность невелика, интенсивность облучений обратно пропорциональна расстоянию или его квадрату (l 2). Поэтому выражение для расчета интенсивности облучения от нагретой поверхности или через отверстие в печи для практических расчетов можно преобразовать:

с = 0,91[(Т/100) 4 - А] F/ l 2 , при l >

с = 0,91[(Т/100) 4 - А] , при l ?

Если рабочее место смещено от нормали к центру излучающей поверхности, необходимо ввести поправку, равную косинусу угла смещения. В некоторых справочниках принято А = 90 (при t 2 = 35 о С).

Чтобы оценить воздействие теплового облучения на организм в работающих горячих цехах, необходимо учесть, что интенсивность облучения разных участков тела человека на рабочем месте изменяется в течение смены или цикла технологического процесса. Поэтому энергия, Дж, поглощенная поверхностью тела человека, определяется по формуле:

ф -- время, с;

S -- площадь облучаемой поверхности тела человека, м 2 .

Таким образом, степень воздействия тепловых излучений на организм человека зависит от интенсивности и времени облучения, размеров облучаемой поверхности. В формулу для с заложена зависимость интенсивности облучения от вида одежды (коэффициент А) и спектрального состава облучения (через температуру источника). В производственных условиях тепловое излучение имеет длины волн л = 0,1ч440 мкм, в горячих цехах л < 10 мкм.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечнососудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

Судорожная болезнь, вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

Перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

Тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

Катаракта (помутнение кристалликов) - профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с л = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюнктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.

3. Меры и средства индивидуальной защиты от тепловых излучений

Для снижения опасности воздействия тепловых излучений используют следующие способы:

· уменьшение интенсивности излучения источника,

· защитное экранирование источника или рабочего места,

· воздушное душирование,

· применение средств индивидуальной защиты,

· организационные и лечебно-профилактические мероприятия.

Нормирование параметров и организационные меры

Прежде чем реализовывать в горячих цехах те или иные способы защиты необходимо знать, до каких значений рекомендуют снизить параметры микроклимата на рабочих местах врачи-гигиенисты или позволяет сделать это современный уровень развития техники. Эти данные приведены, как известно, в нормативно-технической документации.

Допустимая интенсивность теплового облучения с д работающих от нагретых поверхностей технологического оборудования (на постоянных и непостоянных рабочих местах) зависит от величины облучаемой поверхности тела человека S, %, (значения согласно ГОСТ 12.1.005--88 приведены в таблице 2.)

Таблица 2. Допустимая интенсивность теплового облучения

Интенсивность теплового облучения работающих открытыми источниками (нагретым металлом, "открытым пламенем" и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25% поверхности тела при обязательном использовании средств индивидуальной защиты.

При наличии теплового облучения температура воздуха на постоянных рабочих местах не должна превышать указанные в ГОСТ 12.1.005--88 верхние границы оптимальных значений для теплого периода года, на непостоянных рабочих местах -- верхние допустимые значения для постоянных рабочих мест.

Температура нагретых поверхностей оборудования (например, печей), по оценкам гигиенистов, не рекомендуется более 35 °С. По действующим санитарным нормам (СН 245--71) температура нагретых поверхностей и ограждений на рабочих местах не должна превышать 45 °С, а температура на поверхности оборудования, внутри которого t < 100 °С, не должна превышать 35 °С.

При невозможности по техническим причинам достигнуть указанных температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева:

· водовоздушное душирование,

· высокодисперсное распыление воды на облучаемые поверхности и кабины,

· помещения для отдыха и др.

Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их, частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты

Технические меры защиты от тепловых излучений:

· механизация, автоматизация и дистанционное управление и наблюдение за производственными процессами,

· тепловая изоляция и герметичность печей,

· экранирование печей и рабочих мест.

Совершенствование способов и технологии производства сталей и цветных металлов (например, замена мартеновского производства конвертерным), применение средств автоматизации и вычислительной техники в металлургии позволяет резко сократить количество рабочих мест вблизи мощных источников тепловых излучений.

Снижение интенсивности теплового излучения источника обеспечивается заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, обеспечивающей минимальную площадь нагретых поверхностей.

Тепловая изоляция поверхностей источников излучения (печей, ковшей, трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Тепловая изоляция, уменьшая тепловые потери оборудования, обуславливает сокращение расхода топлива (электроэнергии).

Наиболее распространенным и эффективным способом защиты от теплового излучении является экранирование. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей.

Цели экранирования -- снижение температуры наружного ограждения теплового источника и локализация его тепловыделений (рисунок 1а), защита отдельных объектов от излучения источника (рисунок 1б) -- теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций.

Рисунок 1. Расчетные схемы экранирования:

а - локализация источника; б - защита от внешнего источника

Если экранирование снижает поток излучения Q 12 в т раз, то температура наружной поверхности экрана Т э будет в м раз меньше температуры поверхности источника Т 1 , т.е. м = T 1 /T э.

Качество экранирования характеризует коэффициент эффективности экрана:

з = 1 - = , где

Q 12 - поток излучения от источника;

Q э2 - поток излучения от экрана.

Для достижения заданной температуры экрана Тэ=Т 1 /м?35 о С необходимо n экранов, количество которых рассчитывается по формуле:

n = (/[м -4 - () 4 ]) - 1

Конструкция экрана должна обеспечивать свободный восходящий поток воздуха в межэкранном пространстве, чтобы максимально использовать охлаждающее действие конвективных потоков.

По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на:

· непрозрачные,

· полупрозрачные,

· прозрачные.

В непрозрачных экранах энергия электромагнитных колебаний взаимодействует с веществом экрана и превращается в тепловую энергию. Поглощая излучение, экран нагревается и, как всякое нагретое тело, становится источником теплового излучения. При этом излучение поверхностью экрана, противолежащей экранируемому источнику, условно рассматривается как пропущенное излучение источника. К непрозрачным экранам относятся, например, металлические (в т.ч. алюминиевые), альфолевые (алюминиевая фольга), футерованные (пенобетон, пеностекло, керамзит, пемза), асбестовые и др.

В прозрачных экранах излучение, взаимодействуя с веществом экрана, минует стадию превращения в тепловую энергию и распространяется внутри экрана по законам геометрической оптики, что и обеспечивает видимость через экран. Так ведут себя экраны, выполненные из различных стекол: силикатного, кварцевого, органического, металлизированного, а также пленочные водяные завесы (свободные и стекающие по стеклу), вододисперсные завесы.

Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов. К ним относятся металлические сетки, цепные завесы, экраны из стекла, армированного металлической сеткой.

По принципу действия экраны подразделяются на:

· теплоотражающие,

· теплопоглощающие,

· теплоотводящие.

Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла, металла (змеевики) и др.

В таблице 3 отражены виды защитных экранов от теплового излучения.

Таблица 3 - Виды защитных экранов от теплового излучения

По принципу действия

По конструкции и возможности наблюдения за технологическим процессом

Непрозрачные

Полупрозрачные

Прозрачные

Теплопоглощающие

Материалы с большим термическим сопротивлением;

Используют при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Металлические сетки, цепные завесы, армированное стальной сеткой стекло

Разные стекла (силикатные, органические, кварцевые), тонкие металлические пленки, осажденные на стекле

Теплоотводящие

Сварные или литые конструкции, охлаждаемые протекающей внутри водой;

Практически теплонепроницаемы

Металлические сетки, орошаемые водяной пленкой

Водяные завесы у рабочих окон печей, водяная пленка, стекающая по стеклу.

Теплоотражающие

Материал: листовой алюминий, белая жесть, алюминиевая фольга;

Достоинства: высокая эффективность, малая масса, экономичность;

Недостатки: нестойкость к высоким температурам, механическим воздействиям

Пульты управления (или кабины) должны удовлетворять следующим требованиям:

· объем кабины оператора > 3 м 3 ;

· стены, пол и потолок оборудованы теплозащитными ограждениями;

· площадь остекления достаточна для наблюдения за технологическим процессом и минимальна для уменьшения поступления теплоты.

Местную приточную вентиляцию широко используют для создания требуемых параметров микроклимата в ограниченном объеме, в частности, непосредственно на рабочем месте. Это достигается созданием воздушных оазисов, воздушных завес и воздушных душей.

Воздушный оазис создают в отдельных зонах рабочих помещений с высокой температурой. Для этого небольшую рабочую площадь закрывают легкими переносными перегородками высотой 2 м и в огороженное пространство подают прохладный воздух со скоростью 0,2 - 0,4 м/с. Воздушные завесы создают для предупреждения проникновения в помещение наружного холодного воздуха путем подачи более теплого воздуха с большой скоростью (10-15 м/с) под некоторым углом навстречу холодному потоку. Воздушные души применяют в горячих цехах на рабочих местах, находящихся под воздействием лучистого потока теплоты большой интенсивности (более 350 Вт/ м2).

Поток воздуха, направленный непосредственно на рабочего, позволяет увеличить отвод тепла от его тела в окружающую среду. Выбор скорости потока воздуха зависит от тяжести выполняемой работы, а также от интенсивности облучения, но она не должна, как правило, превышать 5 м/с, так как в этом случае у рабочего возникают неприятные ощущения (например, шум в ушах). Эффективность воздушных душей возрастает при охлаждении направляемого на рабочее место воздуха или же при подмешивании к нему мелко распыленной воды (водо-воздушный душ).

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда -- широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудновоспламеняемых, прозрачных и воздухопроницаемых материалов: сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме необходимо обеспечить питьевой режим.

Заключение

В заключении, можно сделать вывод о том, что снижение теплоизлучений является основной задачей для обеспечения нормальных условий труда металлургов, т.к., например, ИК излучение, которое способно проникать в ткани человеческого тела приводят к повышению температуры кожи и лежащих глубже тканей. При коротковолновом излучении повышается температура легких, головного мозга, почек и т.п., может появиться инфракрасная катаракта.

К основным мерам защиты от тепловых излучений можно отнести следующие: уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия, технические меры защиты (дистанционное управление и наблюдение, тепловая изоляция и герметичность печей, экранирование печей и рабочих мест).

Особое внимание уделяется экранированию целью, которого, является снижение температуры наружного ограждения теплового источника и локализация его тепловыделений, защита отдельных объектов от излучения источника -- теплозащита отдельных рабочих мест, постов управления, кабин кранов, строительных несущих конструкций. В свою очередь экраны по конструкции и возможности наблюдения за технологическим процессом можно разделить на непрозрачные, полупрозрачные, прозрачные, а по принципу действия на теплоотражающие, теплопоглощающие и теплоотводящие.

Таким образом, защита от тепловых излучений должна производиться на каждом предприятии, где возможно нахождение таких источников излучения во избежание неблагоприятных последствий для здоровья работающих.

Список используемой литературы

1. Методы и средства защиты человека от опасных и вредных производственных факторов / под ред. В.А. Трефилова. - Пермь: Изд-во Перм. Гос. Техн. Ун-та, 2008.

2. Безопасность труда на производстве. Производственная санитария Справ, пособие/ Под ред. Б.М. Злобинского. М. Металлургия, 1968. 668 с.

3. ГОСТ 12.1.005-88. ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования».

4.СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.

5. СН 245-71. Санитарные нормы проектирования промышленных предприятий.

Размещено на Allbest.ru

Подобные документы

    Основные типы радиоактивных излучений, их негативное воздействие на человека. Радионуклиды как потенциальные источники внутреннего облучения. Способы защиты от источников ионизирующих излучений. Пути поступления радитоксичных веществ в организм.

    реферат , добавлен 24.09.2013

    Виды инструктажа персонала. Тепловые излучения, их воздействие на человека. Меры защиты от тепловых излучений. Классификация шумов. Классификация производственных помещений по опасности поражения электрическим током. Условия возникновения горения.

    контрольная работа , добавлен 31.08.2012

    Источники и воздействие электромагнитных излучений. Природные и антропогенные источники электромагнитных полей. Излучение бытовых приборов. Воздействие электромагнитных полей на организм. Защита от электромагнитных излучений.

    реферат , добавлен 01.10.2004

    Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа , добавлен 14.05.2012

    Воздействие ионизирующих излучений на неживое и живое вещество, необходимость метрологического контроля радиации. Экспозиционная и поглощенная дозы, единицы размерности дозиметрических величин. Физико-технические основы контроля ионизирующих излучений.

    контрольная работа , добавлен 14.12.2012

    Виды электромагнитных излучений. Влияние излучений монитора компьютера и экрана телевизора на человека. Биологическое действие электромагнитных излучений на организм человека. Санитарно-гигиенические требования при работе с компьютером и телевизором.

    реферат , добавлен 28.05.2012

    Источники внешнего облучения. Воздействие ионизирующих излучений. Генетические последствия радиации. Методы и средства защиты от ионизирующих излучений. Особенности внутреннего облучения населения. Формулы эквивалентной и поглощенной доз излучения.

    презентация , добавлен 18.02.2015

    Основные характеристики ионизирующих излучений. Принципы и нормы радиационной безопасности. Защита от действия ионизирующих излучений. Основные значения дозовых пределов внешнего и внутреннего облучений. Отечественные приборы дозиметрического контроля.

    реферат , добавлен 13.09.2009

    Основные виды световых излучений и их негативное воздействие на организм человека и его работоспособность. Основные источники лазерного излучения. Вредные факторы при эксплуатации лазеров. Системы искусственного освещения. Освещение рабочего места.

    доклад , добавлен 03.04.2011

    Основные источники электромагнитного поля и физические причины его существования. Отрицательное воздействие электромагнитных излучений на организм человека. Основные виды средств коллективной и индивидуальной защиты. Безопасность лазерного излучения.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

«Ивановский государственный энергетический

Университет имени В.И.Ленина»

Кафедра «Безопасности жизнедеятельности»

Защита от теплового излучения

Отчет по лабораторной работе по курсу

«Безопасность жизнедеятельности»

Выполнили:

Маслов А.С.

Метусалло Ю.А.

Проверил:

Каманин Д.А

Иваново - 2012

Теоритическая часть. Общие сведения.

Лучистый теплообмен между телами представляет собой процесс распространения тепловой энергии, которая излучается в виде электромагнитных волн в видимой и инфракрасной (ИК) области спектра. Длина волны видимого излучения - от 0,38 до 0,77 мкм, инфракрасного - от 0,77 до 1000 мкм. Такое излучение называется тепловым . С учетом особенности биологического действия по длинам волн ИК-излучения делятся на области: коротковолновую, с λ = 0,76–15 мкм, средневолновую, с λ = 16-100 мкм, длинноволновую, с λ > 100 мкм.

Производственные источники лучистого тепла по характеру излучения можно разделить на 4 группы:

Источники с температурой поверхности до 500 С (паропроводы, наружная поверхность нагревательных, плавильных, обжиговых печей, сушил, парогенераторов и водогрейных котлов, выпарных аппаратов, теплообменников и др.). Их спектр содержит исключительно длинные инфракрасные лучи с длиной волны=3,79,3 мкм.

Поверхности с температурой t = 500 1200 С (внутренние поверхности печей, горнов, топок парогенераторов, расплавленные шлаки и металл и др.) Их спектр содержит преимущественно длинные инфракрасные лучи, но появляются и видимые лучи.

Поверхности с t = 1200 1800 С (расплав­ленный металл и шлаки, пламя, разогретые электроды и др.) Их спектринфракрасные лучи вплоть до наиболее коротких, а также видимые, которые могут достигать высокой яркости.

Источники с t 1800 С (дуговые печи, сварочные аппараты и др.). Их спектр излучения содержит наряду с инфракрасными и световыми лучами, ультрафиолетовые лучи.

Воздух прозрачен (диатермичен ) для теплового излучения, поэтому температура воздуха не повышается при прохождении через него лучистого тепла. Тепловые лучи поглощаются предметами, нагревают их и они становятся излучателями тепла. Воздух, соприкасаясь с нагретыми телами, также нагревается и температура воздушной среды в производственных помещениях возрастает.

Интенсивность теплового излучения может быть определена по формуле:

где Q - интенсивность теплового излучения, Вт/м2;

F- площадь излучающей поверхности, м2;

Т- температура излучающей поверхности, К;

l - расстояние от излучающей поверхности, м.

Из формулы (1) следует, что количество лучистого тепла, поглощаемого телом человека, зависит от температуры источника излучения, площади излучающей поверхности и квадрата расстояния между излучающей поверхностью и телом человека.

Тепловой обмен организма человека с окружающей средой заключается во взаимосвязи между образованием тепла (термогенезом ) в результате жизнедеятельности организма и отдачей им этого тепла во внешнюю среду. Отдача тепла осуществляется, в основном, тремя способами: конвекцией, излучением и испарением.

Передача тепла ИК-излучением является наиболее эффективным способом теплоотдачи и составляет в комфортных метеоусловиях 44-59 % общей теплоотдачи. Тело человека излучает тепловую энергию в диапазоне длин волн от 5 до 25 мкм с максимумом энергии на длине волны 9,4 мкм.

В производственных условиях, когда работающий человек окружен предметами, имеющими температуру, отличную от температуры тела человека, соотношение способов теплоотдачи может существенно изменяться. Передача человеческим телом лучистой энергии во внешнюю среду возможна лишь тогда, когда температура окружающих предметов ниже температуры тела человека. Если температура окружающих предметов выше температуры человеческого тела, то направление потока лучистой энергии меняется на противоположное, и уже тело человека будет получать извне дополнительную тепловую энергию. Воздействие ИК лучей приводит к перегреву организма и тем быстрее, чем больше мощность излучения, выше температура и влажность воздуха в рабочем помещении, выше интенсивность выполняемой работы.

ИК-излучение, помимо усиления теплового воздействия окружающей среды на организм работающего, обладает специфическим влиянием. С гигиенической точки зрения важной особенностью ИК-излучения является его способность проникать в живую ткань на разную глубину.

Лучи длинноволнового диапазона (от 3 мкм до 1 мм) задерживаются в поверхностных слоях кожи уже на глубине 0,1 - 0,2 мм. Поэтому их физиологическое воздействие на организм проявляется, главным образом, в повышении температуры кожи и перегреве организма.

Наибольшее воздействие на организм человека оказывает коротковолнового диапазона (от 0,77 до 1,4 мкм), так как оно обладает наибольшей энергией фотонов и способно глубоко проникать в ткани организма и интенсивно поглощаться водой, содержащейся в тканях. В практических условиях тепловое излучение является интегральным, так как нагретые тела излучают одновременно в широком диапазоне длин волн.

Под действием высоких температур и теплового облучения работающих происходят резкое нарушение теплового баланса в организме, биохимические сдвиги, появляются нарушения сердечно-сосудистой и нервной систем, усиливается потоотделение, происходит потеря нужных организму солей, нарушение зрения.

Все эти изменения могут проявиться в виде заболеваний:

- судорожная болезнь , вызванная нарушением водно-солевого баланса, характеризуется появлением резких судорог, преимущественно в конечностях;

- перегревание (тепловая гипертермия) возникает при накоплении избыточного тепла в организме; основным признаком является резкое повышение температуры тела;

- тепловой удар возникает в особо неблагоприятных условиях: выполнение тяжелой физической работы при высокой температуре воздуха в сочетании с высокой влажностью. Тепловые удары возникают в результате проникновения коротковолнового инфракрасного излучения (до 1,5 мкм) через покровы черепа в мягкие ткани головного мозга;

- катаракта (помутнение кристалликов) – профессиональное заболевание глаз, возникающее при длительном воздействии инфракрасных лучей с λ = 0,78-1,8 мкм. К острым нарушениям органов зрения относятся также ожог, конъюктивиты, помутнение и ожог роговицы, ожог тканей передней камеры глаза.

Кроме того, ИК-излучение воздействует на обменные процессы в миокарде, водно-электролитный баланс в организме, на состояние верхних дыхательных путей (развитие хронического ларингоринита, синуситов), не исключается мутагенный эффект теплового излучения.

Поток тепловой энергии, кроме непосредственного воздействия на работающих, нагревает пол, стены, перекрытия, оборудование, в результате чего температура воздуха внутри помещения повышается, что также ухудшает условия работы.

Тепловое излучение - электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счёт его внутренней энергии (в отличие, например, от люминесценции, возникающей за счёт внешних источников энергии).

Тепловое излучение - один из трёх элементарных видов переноса тепловой энергии (теплопроводность, конвекция, излучение), которое осуществляется при помощи электромагнитных волн.

При длительном воздействии высокой температуры и лучистой энергии температура тела человека может повыситься на 1-2°С. Из организма тогда усиливается выделение пота, причем пот содержит значительное количество поваренной соли, вследствие чего происходит обеднение крови солью и самочувствие человека ухудшается. При прекращении работы и переходе в помещение с нормальной температурой спустя 20-30 мин. Восстанавливается нормальное самочувствие.

В довольно редких случаях, когда перегрев достигает 40,5°С и выше и организм не в состоянии справиться с ним и нарушениями, которые перегрев вызывает, может наступить тепловой удар. Человек тогда впадает в чрезвычайно болезненное состояние, которое при определенных условиях может привести к смерти.

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать:

35 Вт/м 2 при облучении 50% поверхности тела и более;

70 Вт/м 2 - при величине облучаемой поверхности от 25 до 50% и более;

100 Вт/м 2 - при облучении не более 25% поверхности тела.

Интенсивность теплового облучения работающих от открытых источников (нагретый металл, стекло, «открытое» пламя и др.) не должна превышать 140 Вт/м 2 , при этом облучению не должно подвергаться более 25%) поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе средств защиты лица и глаз.

К числу мероприятий, способных ослабить вредное действие теплового излучения, относятся:

а) механизация работ, направленная на то, чтобы работники меньше подвергались тепловому облучению;

б) устройство у тепловыделяющих производственных источников цепных или водяных завес;

в) применение экранов из материалов, обладающих малой теплопроводностью;

г) осуществление аэрации горячих цехов;

д) устройство специальных комнат отдыха, а также душей, снабжение работников подсоленной газированной водой (3 г соли на 1 л воды);

е) применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах;

ж) обязательное применение специальных очков для защиты от инфракрасного излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.

Для улучшения теплоотдачи обычно нет необходимости создавать определенные метеорологические условия во всем объеме горячего цеха; такие условия обеспечиваются на отдельных рабочих местах. Это осуществляется путем создания оазисов и душей. Воздушный оазис - огороженный с боков щитами и открытый сверху объем в цехе, куда подается охлажденный воздух. Воздушный душ подает на рабочее место через воздухораспределитель воздух, имеющий заданные параметры.

При температуре в помещении выше 28°С и, интенсивности облучения 210 Вт/м2 необходимое охлаждение воздуха достигается введением в воздушную струю распыленной воды. Такой душ называют водо-воздушным.

Индивидуальная защита в горячих цехах достигается спецодеждой, выполненной из невоспламеняемого, стойкого против воздействия лучистой теплоты, прочного, мягкого и воздухопроницаемого материала. В зависимости от требований защиты костюм выполняется из сукна, брезента, синтетического волокну, химически обработанных с металлическим покрытием тканей. Под пневматический комбинезон подается воздух из шлангового прибора пли от сети сжатого воздуха.

Голову от перегревов и ожогов защищают шляпой из войлока, фетра или грубошерстного сукна. Костюм дополняет специальная, стойкая к повышенной температуре и облучению обувь и рукавицы.

Глаза от воздействия лучистой энергии защищают очками со светофильтрами, спектральное поглощение которых соответствует спектру лучистого потока. Очки крепятся к козырьку или полям головного убора.

На горячих производствах существенное значение имеет питьевой режим и режим отдыха. Для восстановления водного баланса в организме рабочих снабжают подсоленной (0,2% поваренной соли), газированной водой из расчета 4-5 л на человека в смену.

Такая вода хорошо утоляет жажду, так как при добавлении соли ткани организма лучше удерживают воду.

При работах с высокой концентрацией излучаемой теплоты в течение смены устраиваются перерывы, частота и длительность которых определяется условиями и тяжестью работы. Во время перерывов рабочие отдыхают в специально оборудованных местах отдыха-закрытых кабинах или огороженных местах, где обеспечивается заданный благоприятный микроклимат.

Тепловым излучением называется процесс, при котором теплота излучения распространяется в основном в форме инфракрасного излучения с длиной волны около 10 мм. Источниками тепловых излучений являются все тела, нагретые до температуры выше температуры окружающей среды.

Теплота излучения воздухом почти не поглощается, она передается от более нагретых тел к телам с меньшей температурой, вызывая их нагревание. Окружающий воздух нагревается не тепловым излучением, а конвекцией, т. е. при соприкосновении с поверхностями нагретых тел.

В результате поглощения телом человека падающей энергии (от печей, раскаленных слитков) повышается температура кожи и глубже лежащих слоев на облучаемом участке. Под влиянием облучения в организме происходят биохимические сдвиги, наступает нарушение сердечно-сосудистой и нервной системы, могут возникнуть заболевания глаз (катаракта) , т.к. излучение наиболее неблагоприятно для органов с плохим кровообращением (хрусталик глаза).

Температура нагретых поверхностей производственного оборудования и ограждений на рабочих местах (печей, ванн и др.) не должна превышать 45°С, а для оборудования, внутри которого температура равна или ниже 100 °С, температура на поверхности не должна превышать 35 °С.

Допустимая величина интенсивности излучения составляет от 35 до 140 Вт/м 2 (ГОСТ 12.1.005-88) - такое тепловое излучение переносится человеком неограниченно долго.

Для сравнения: примеры интенсивности тепловых излучений:

1) солнечный полдень - 700-800 Вт/м 2 ;

2) заливка стали в формы - 12000 Вт/м 2 .

Средства защиты:

1. Теплоизоляция (войлок, минеральная вата). Толщина теплоизоляции должна быть такой, чтобы температура снаружи ее была не более 45˚ С (СН 245-71).

Теплоизоляция - это элементы конструкции, уменьшающие передачу тепла. Также термин может означать материалы для выполнения таких элементов или комплекс мероприятий по их устройству.

Теплоизоляцию можно разделить по следующим типам, соответствующим разным способам теплопередачи:

Отражающая, которая предотвращает потери за счёт инфракрасного "теплового" излучения;

Теплоизоляция, предотвращающая потери за счёт теплопроводности.

Теплоизоляция применяется для замедления нагрева или охлаждения всюду, где необходимо поддерживать заданную температуру,

Для изготовления теплоизоляции, препятствующей теплопроводности, используют материалы, имеющие очень низкий коэффициент теплопроводности, - теплоизоляторы (материалы из стекловолокна, вспененный полиэтилен высокого давления). Теплоизоляторы отличаются неоднородной структурой и высокой пористостью. В случаях, когда теплоизоляция применяется для удержания тепла внутри изолируемого объекта, такие материалы могут называться утеплителями.

2 Экранирование тепловых излучений (кварцевое стекло, металлическая сетка, цепные завесы, водяные завесы).

Для защиты от инфракрасного излучения применяются следующие экраны: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны могут быть теплоотражающими, теплопоглощающими и теплоотводящими. Однако это деление достаточно условно, так как каждый экран обладает одновременно способностью отражать, поглощать и отводить тепло. Отнесение экрана к той или иной группе производится в зависимости от того, какая его способность выражена сильнее.

Теплоотражающие экраны имеют низкую степень черноты поверхностей, вследствие чего они значительную часть падающей на них лучистой энергии отражают в обратном направлении. В качестве теплоотражающих материалов в конструкции экранов широко используют альфоль, листовой алюминий, оцинкованную сталь, алюминиевую краску.

Теплопоглощающими называют экраны, выполненные из материалов с высоким термическим сопротивлением (малым коэффициентом теплопроводности). В качестве теплопоглощающих материалов применяют огнеупорный и теплоизоляционный кирпич, асбест, шлаковату.

В качестве теплоотводящих экранов наиболее широко используются водяные завесы, свободно падающие в виде пленки, орошающие другую экранирующую поверхность (например, металлическую), либо заключенные в специальный кожух из стекла (акварильные экраны), металла (змеевики) и др.

Полупрозрачные экраны изготовляют из металлической сетки, цепей, армированного стальной сеткой стекла и применяются: сетки - при интенсивности излучения 350 - 1000 Вт/м 2 , цепные завесы и армированное стекло - 700 - 5000 Вт/м 2 . Полупрозрачные экраны объединяют в себе свойства прозрачных и непрозрачных экранов.

Прозрачные экраны могут быть теплопоглощающими и теплоотводящими. Теплопоглощающие экраны изготовляют из силикатных, кварцевых и органических стекол, бесцветных, окрашенных или металлизированных тонкими пленками.

Метеорологические условия на производстве характеризуются температурой воздушной среды, относительной влажностью, скоростью движения воздуха и атмосферным давлением, температурой поверхности (ограждающих конструкций, технологического оборудования), интенсивностью теплового излучения. Особое место занимает тепловое (инфракрасное) излучение, исходящее от нагретых материалов, поверхности оборудования. Все эти параметры оказывают большое влияние на здоровье человека и производительность труда.

Гигиенические требования к величинам температуры, относительной влажности и скорости движения воздуха устанавливаются в зависимости:

  • а) от категории работ , различающихся по уровню энергозатрат:
    • легкие физические работы – работы, производимые сидя и сопровождающиеся незначительным физическим напряжением;
    • физические работы средней тяжести – работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения;
    • тяжелые физические работы – работы, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий;
  • б) сезона года. Здесь различают два периода – холодный и теплый. Холодный период года – это период со среднесуточной температурой наружного воздуха, равной +10 °С и ниже. Теплый период года – период со среднесуточной температурой наружного воздуха выше +10 °С.

Отнесение условий труда к тому или иному классу вредности и опасности по показателям микроклимата осуществляется в соответствии с Руководством Р 2.2.2006–05 "Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда". Условия труда оцениваются по разным показателям микроклимата в зависимости от конкретного рабочего места. Гигиеническими нормативами предусмотрено деление микроклимата на нагревающий и охлаждающий.

К нагревающему микроклимату относится такое сочетание параметров микроклимата (температура воздуха, скорость его движения, влажность, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме и (или) увеличении доли потерь тепла испарением пота.

Охлаждающим микроклиматом является такое сочетание параметров микроклимата, при котором имеет место изменение теплообмена, приводящее к образованию общего или локального дефицита тепла в организме.

Класс условий труда при работе в производственных помещениях с охлаждающим микроклиматом (при отсутствии теплового излучения) определяется по нижней границе температуры воздуха. Класс условий труда при работах на открытой территории в холодный период года и в неотапливаемых помещениях определяется по нижней границе температуры воздуха.

На ряде производств высокая температура воздушной среды сочетается с повышенной влажностью (красильные цеха текстильной промышленности, бумажная промышленность и т.д.). На других производствах технология требует пониженных температур (морозильники, бродильные отделения пивоваренных заводов и т.д.). Часто работы проводятся на открытом воздухе в зимнее время (строительные работы, открытая добыча угля и полезных ископаемых и т.д.).

Теплообмен в производственных помещениях горячих цехов происходит излучением и конвекцией. В процессе теплообмена различают две стадии: между источниками теплоты (с температурой более 33 °С) и окружающими предметами – эта стадия отличается высокой интенсивностью лучистого обмена и сравнительно малой интенсивностью конвективного; между нагретыми облучением телами и воздухом – в этой стадии преобладает конвекция. При температуре источников тепловыделений более 50 °С в теплообмене преобладает излучение, поэтому для обеспечения нормальных условий труда в горячих цехах снижение теплоизлучений является основной задачей.

Каждый источник теплоты создает в пространстве поле излучения , независимое от взаимного положения источников. Распространяясь в пространстве, поля излучений накладываются одно на другое, создавая некоторую картину терморадиационной напряженности цеха. Таким образом, пространство горячего цеха представляет собой поле распределения энергии излучения. Лучистая энергия не поглощается окружающим воздухом: в поверхностных слоях облучаемого тела она превращается в тепловую энергию. Передача теплоты излучением происходит в инфракрасном (ИК), видимом (В) и ультрафиолетовом (УФ) диапазонах спектра распространения электромагнитных волн и зависит в первую очередь от температуры источника.

Тепловой обмен человеческого организма с окружающей средой заключается во взаимосвязи между образованием тепла в результате жизнедеятельности организма и отдачей или получением им тепла из внешней среды.

У работающих при повышенных температурах нарушается обмен веществ, начинается обильное потоотделение. С потом выделяется до 50 г NaCl, вода при этом теряется в количестве до 8 литров в смену. В результате нарушается водно-солевой обмен, что ведет к изменениям в белковом обмене: в крови появляется большое количество молочной кислоты, мочевины. Вместе с потом удаляются необходимые витамины, тем самым нарушается витаминный обмен. Нарушается деятельность сердечно-сосудистой и дыхательной систем: пульс учащается до 100 ударов в минуту, повышается максимальное и понижается минимальное кровяное давление, учащается дыхание.

При охлаждении организма кровеносные сосуды кожи сокращаются, скорость протекания крови через кожу и отдача тепла путем конвекции и излучения замедляется. Охлаждение вызывает нарушение углеводного обмена, рефлекторной деятельности, появляются простудные заболевания, понижается производительность труда.

В производственных условиях важное значение приобретают изменения в организме, вызванные повторяющимися изо дня в день в течение длительного периода охлаждением или нагреванием. У работающих постепенно образуется новый функциональный уровень организма, часто наступает физиологическое приспособление к производственным термическим воздействиям. Возникает адаптация организма к этим условиям.

Нормирование метеорологических условий производственных помещений осуществляется по ГОСТ 12.1.005– 88 "Общие санитарно-гигиенические требования к воздуху рабочей зоны". Этот стандарт устанавливает оптимальные и допустимые микроклиматические условия в зависимости от характера производственных помещений, времени года и категории выполняемой работы (легкая, средней тяжести и тяжелая).

Для снижения опасности воздействия тепловых излучений используют такие способы, как уменьшение интенсивности излучения источника, защитное экранирование источника или рабочего места, воздушное душирование, применение средств индивидуальной защиты, организационные и лечебно-профилактические мероприятия.

При невозможности по техническим причинам достигнуть нормируемых температур вблизи источников значительных тепловых излучений предусматривается защита работающих от возможного перегрева: водовоздушное ду- ширование, высокодисперсное распыление воды на облучаемые поверхности и кабины, устройство помещений для отдыха и др. Правильная организация отдыха имеет большое значение для восстановления работоспособности. Длительность перерывов и их частота определяются с учетом интенсивности облучения и тяжести работы. В местах отдыха недалеко от места работы обеспечиваются благоприятные метеорологические условия. Регулярно организуются медосмотры для своевременного лечения.

Технические меры защиты от тепловых излучений: механизация, автоматизация, дистанционное управление и наблюдение, уменьшение тепловых потерь излучением, тепловая изоляция и герметичность источников излучения (печей, трубопроводов с горячими газами и жидкостями), экранирование источников излучения и рабочих мест.

Тепловая изоляция поверхностей источников излучения снижает температуру излучающей поверхности и уменьшает как общее тепловыделение, так и радиационную его часть. Уменьшая тепловые потери оборудования, тепловая изоляция обусловливает сокращение расхода топлива (электроэнергии). Печи изолируют в большинстве случаев легковесным кирпичом; между наружным стальным кожухом и кирпичной кладкой иногда применяют засыпки из сыпучих или волокнистых материалов; своды изолируют засыпкой из сыпучих материалов (например, песка или колошниковой пыли). Засыпка создает герметичность, что особенно важно для газовых выбросов.

Экранирование – наиболее распространенный и эффективный способ защиты от теплового излучения. Экраны применяются для локализации источников лучистой теплоты, снижения облученности на рабочих местах, снижения температур окружающих рабочее место поверхностей. По принципу действия экраны подразделяются на теплоотражающие, теплопоглощающие, теплоотводящие. Подобное деление в известной степени условно, так как каждый экран обладает способностью отражать, поглощать и отводить теплоту. Отнесение экрана к той или иной группе зависит от того, какая из его способностей наиболее выражена. По конструкции и возможности наблюдения за технологическим процессом экраны можно разделить на три группы:

непрозрачные . Материалом для теплоотражающих экранов служат листовой алюминий, белая жесть, алюминиевая фольга, укрепляемые на несущем материале (картоне, асбесте, сетке). Достоинства отражающих экранов – высокая эффективность, малая масса, экономичность; недостатки – нестойкость к высоким температурам, механическим воздействиям, ухудшающаяся эффективность при пылеотложениях и окислении.

В теплопоглащающих экранах применяют материалы с большим термическим сопротивлением (щиты асбестовые на металлической сетке или листе, футерованные огнеупорным или теплоизоляционным кирпичом и др.), вследствие чего температура наружной поверхности резко уменьшается. Такие экраны можно использовать при высоких интенсивностях излучений и температурах, механических ударах и запыленной среде.

Теплоотводящие экраны представляют собой сварные или литые конструкции, охлаждаемые протекающей внутри водой. Подобные экраны практически теплонепроницаемы. Они наиболее эффективны по сравнению с другими видами непрозрачных экранов, но к их устройству предъявляются определенные требования безопасности;

  • полупрозрачные . К теплопоглощающим экранам относятся металлические сетки (размер ячейки 3–3,5 мм), цепные завесы, армированное стальной сеткой стекло. Эти экраны уступают по эффективности непрозрачным экранам;
  • прозрачные . Для теплопоглащающих экранов используют разные стекла (силикатные, органические, кварцевые), бесцветные или окрашенные в массе, тонкие металлические пленки, осажденные на стекле.

Дистанционные пульты управления (или кабины), предназначенные для защиты от теплового излучения, должны удовлетворять следующим требованиям: объем кабины оператора – более 3 м3; стены, пол и потолок оборудованы теплозащитными ограждениями; площадь остекления достаточная для наблюдения за технологическим процессом и минимальная для уменьшения поступления теплоты.

Средства индивидуальной защиты от теплового излучения предназначены для защиты глаз, лица и поверхности тела. Для защиты глаз и лица используют очки со светофильтрами и щитки, голову от перегрева защищают каской, иногда – широкополой войлочной или фетровой шляпой. Остальную часть тела защищают спецодеждой из трудно- воспламеняемых и воздухопроницаемых материалов – сукна, брезента или льняных тканей и спецобувью. В горячих цехах для поддержания водного баланса в организме обеспечивают питьевой режим.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация