Что называют линейным уравнением. Примеры систем линейных уравнений: метод решения

Главная / Бизнес

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое «линейные уравнения»

или в устной форме - трем друзьям дали по яблок из расчета, что всего в наличии у Васи яблок.

И вот ты уже решил линейное уравнение
Теперь дадим этому термину математическое определение.

Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна . Оно выглядит следующим образом:

Где и - любые числа и

Для нашего случая с Васей и яблоками мы запишем:

- «если Вася раздаст всем троим друзьям одинаковое количество яблок, у него яблок не останется»

«Скрытые» линейные уравнения, или важность тождественных преобразований

Несмотря на то, что на первый взгляд все предельно просто, при решении уравнений необходимо быть внимательным, потому что линейными уравнениями называются не только уравнения вида, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду. Например:

Мы видим, что справа стоит, что, по идее, уже говорит о том, что уравнение не линейное. Мало того, если мы раскроем скобки, то получим еще два слагаемых, в которых будет, но не надо торопиться с выводами ! Прежде, чем судить, является ли уравнение линейным, необходимо произвести все преобразования и таким образом, упростить исходный пример. При этом преобразования могут изменять внешний вид, но никак не саму суть уравнения.

Иными словами данные преобразования должны быть тождественными или равносильными . Таких преобразований всего два, но они играют очень, ОЧЕНЬ важную роль при решении задач. Рассмотрим оба преобразования на конкретных примерах.

Перенос влево - вправо.

Допустим, нам необходимо решить такое уравнение:

Еще в начальной школе нам говорили: «с иксами - влево, без иксов - вправо». Какое выражение с иксом стоит справа? Правильно, а не как не. И это важно, так как при неправильном понимании этого, казалось бы простого вопроса, выходит неверный ответ. А какое выражение с иксом стоит слева? Правильно, .

Теперь, когда мы с этим разобрались, переносим все слагаемые с неизвестными в левую сторону, а все, что известно - в правую, помня, что если перед числом нет никакого знака, например, то значит число положительно, то есть перед ним стоит знак « ».

Перенес? Что у тебя получилось?

Все, что осталось сделать - привести подобные слагаемые. Приводим:

Итак, первое тождественное преобразование мы успешно разобрали, хотя уверена, что ты и без меня его знал и активно использовал. Главное - не забывай про знаки при числах и меняй их на противоположные при переносе через знак равенства!

Умножение-деление.

Начнем сразу же с примера

Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные - в другой, но что-то нам мешает… И это что-то - четверка, так как если бы ее не было, все было бы идеально - икс равен числу - именно так, как нам и нужно!

Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от), а переносить весь множитель тоже не имеет смысла…

Пришло время вспомнить про деление, в связи с чем разделим все как раз на! Все - это означает и левую, и правую часть. Так и только так! Что у нас получается?

Вот и ответ.

Посмотрим теперь другой пример:

Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на! Какой ты получил ответ? Правильно. .

Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего - Например, для решения нашего большого примера:

Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!

Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности. Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему , так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:

Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом. Складываем все отдельно - множители, у которых есть, множители, у которых есть и остальные множители, в которых нет неизвестных. Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно вправо. Что у тебя получилось?

Как ты видишь, иксы в квадрате исчезли, и мы видим совершенно обычное линейное уравнение . Осталось только найти!

И напоследок скажу еще одну очень важную вещь про тождественные преобразования - тождественные преобразования применимы не только для линейных уравнений, но и для квадратных, дробных рациональных и других. Просто нужно запомнить, что при переносе множителей через знак равенства мы меняем знак на противоположный, а при делении или умножении на какое-то число, мы умножаем/делим обе части уравнения на ОДНО и то же число.

Что еще ты вынес из этого примера? Что глядя на уравнение не всегда можно прямо и точно определить, является ли оно линейным или нет. Необходимо сначала полностью упростить выражение, и лишь потом судить, каким оно является.

Линейные уравнения. Примеры.

Вот тебе еще пару примеров для самостоятельной тренировки - определи, является ли уравнение линейным и если да, найди его корни:

Ответы:

1. Является.

2. Не является.

Раскроем скобки и приведем подобные слагаемые:

Произведем тождественное преобразование - разделим левую и правую часть на:

Мы видим, что уравнение не является линейным, так что искать его корни не нужно.

3. Является.

Произведем тождественное преобразование - умножим левую и правую часть на, чтобы избавиться от знаменателя.

Подумай, почему так важно, чтобы? Если ты знаешь ответ на этот вопрос, переходим к дальнейшему решению уравнения, если нет - обязательно загляни в тему , чтобы не наделать ошибок в более сложных примерах. Кстати, как ты видишь, ситуация, когда невозможна. Почему?
Итак, продолжаем и преобразовываем уравнение:

Если ты без труда со всем справился, поговорим о линейных уравнениях с двумя переменными.

Линейные уравнения с двумя переменными

Теперь перейдем к чуть более сложному - линейным уравнениям с двумя переменными.

Линейные уравнения с двумя переменными имеют вид:

Где, и - любые числа и.

Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое - здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.

Какой бы привести тебе жизненный пример... Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а яблока оставит себе. Сколько яблок нужно купить Васе, если каждому другу он даст по яблоку? А по? А если по?

Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:

  • - количество яблок, которое получит человек (, или, или);
  • - количество яблок, которое Вася возьмет себе;
  • - сколько всего яблок нужно купить Васе с учетом количества яблок на человека.

Решая эту задачу, мы получим, что если одному другу Вася даст яблоко, то ему необходимо покупать штук, если даст яблока - и т.д.

И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике? Строим и отмечаем значение наших, то есть точки, с координатами, и!

Как ты видишь, и зависят друг от друга линейно , отсюда и название уравнений - «линейные ».

Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика - прямой и параболы, заданными произвольными функциями:

Найди и отметь на обоих рисунках точки, соответствующие.
Что у тебя получилось?

Ты видишь, что на графике первой функции одному соответствует один , то есть и линейно зависят друг от друга, что не скажешь про вторую функцию. Конечно, ты можешь возразить, что на втором графике так же соответствует икс - , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой, которому соответствует не только один. Да и построенный график никак не напоминает линию, а является параболой.

Повторюсь, еще раз: графиком линейного уравнения должна быть ПРЯМАЯ линия .

С тем, что уравнение не будет линейным, если у нас идет в какой-либо степени - это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например или. Но я тебя уверяю - ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.

Не веришь? Построй, а затем сравни с тем, что получилось у меня:

А что будет, если мы разделим что-то на, например, какое-то число? Будет ли линейная зависимость и? Не будем рассуждать, а будем строить! Например, построим график функции.

Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
Подведем итоги:

  1. Линейное уравнение - это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.
  2. Линейное уравнение с одной переменной имеет вид:
    , где и - любые числа;
    Линейное уравнение с двумя переменными:
    , где, и - любые числа.
  3. Не всегда сразу можно определить, является ли уравнение линейным или нет. Иногда, чтобы понять это, необходимо произвести тождественные преобразования перенести влево/вправо подобные члены, не забыв изменить знак, или умножить/разделить обе части уравнения на одного и тоже число.

ЛИНЕЙНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

1. Линейное уравнение

Это алгебраическое уравнение, у которого полная степень составляющих его многочленов равна.

2. Линейное уравнение с одной переменной имеет вид:

Где и - любые числа;

3. Линейное уравнение с двумя переменными имеет вид:

Где, и - любые числа.

4. Тождественные преобразования

Чтобы определить является ли уравнение линейным или нет, необходимо произвести тождественные преобразования:

  • перенести влево/вправо подобные члены, не забыв изменить знак;
  • умножить/разделить обе части уравнения на одного и тоже число.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Сперва необходимо понять, что же это такое.

Есть простое определение линейного уравнения , которое дают в обычной школе: «уравнение, в котором переменная встречается только в первой степени». Но оно не совсем верно: уравнение не является линейным, оно даже не приводится к такому, оно приводится к квадратичному.

Более точное определение таково: линейное уравнение – это уравнение, которое с помощью эквивалентных преобразований можно привести к виду , где title="a,b in bbR, ~a0">. На деле мы будем приводить это уравнение к виду путём переноса в правую часть и деления обеих частей уравнения на . Осталось разъяснить, какие уравнения и как мы можем привести к такому виду, и, самое главное, что дальше делать с ними, чтобы решить его.

На самом деле, чтобы понять, является ли уравнение линейным или нет, его необходимо сперва упростить, то есть привести к виду, где его классификация будет однозначна. Запомните, с уравнением можно делать всё, что угодно, что не изменит его корней - это и есть эквивалентное преобразование . Из самых простых эквивалентных преобразований можно выделить:

  1. раскрытие скобок
  2. приведение подобных
  3. умножение и/или деление обеих частей уравнения на ненулевое число
  4. прибавление и/или вычитание из обеих частей одного и того же числа или выражения*
Эти преобразования Вы можете делать безболезненно, не задумываясь о том, "испортите" Вы уравнение или нет.
*Частной интерпретацией последнего преобразования является "перенос" слагаемых из одной части в другую со сменой знака.

Пример 1:
(раскроем скобки)
(прибавим к обеим частям и вычитание /перенесём со сменой знака числа влево, а переменные вправо)
(приведём подобные)
(разделим на 3 обе части уравнения)

Вот мы и получили уравнение, которое имеет такие же корни, как и исходное. Напомним читателю, что "решить уравнение" - значит найти все его корни и доказать, что других нет, а "корень уравнения" - это такое число, которое будучи подставленным вместо неизвестной, обратит уравнение в верное равенство. Ну так в последнее уравнение найти число, обращающее уравнение в верное равенство очень просто - это число . Никакое другое число тождества из данного уравнения не сделает. Ответ:

Пример 2:
(умножим обе части уравнения на , предварительно убедившись, что мы не умножаем на : title="x3/2"> и title="x3">. То есть если такие корни получатся, то мы их обязаны будем выкинуть.)
(раскроем скобки)
(перенесём слагаемые)
(приведём подобные)
(разделим обе части на )

Примерно так и решаются все линейные уравнения. Для читателей помладше, скорее всего, данное объяснение показалось сложным, поэтому предлагаем версию "линейные уравнения для 5 класса"

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

  • Равенство с переменной называют уравнением.
  • Решить уравнение – значит найти множество его корней. Уравнение может иметь один, два, несколько, множество корней или не иметь их вовсе.
  • Каждое значение переменной, при котором данное уравнение превращается в верное равенство, называется корнем уравнения.
  • Уравнения, имеющие одни и те же корни, называются равносильными уравнениями.
  • Любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.
  • Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Примеры. Решить уравнение.

1. 1,5х+4 = 0,3х-2.

1,5х-0,3х = -2-4. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство:

1,2х = -6. Привели подобные слагаемые по правилу:

х = -6 : 1,2. Обе части равенства разделили на коэффициент при переменной, так как

х = -5. Делили по правилу деления десятичной дроби на десятичную дробь:

чтобы разделить число на десятичную дробь, нужно перенести запятые в делимом и делителе на столько цифр вправо, сколько их стоит после запятой в делителе, а затем выполнить деление на натуральное число:

6 : 1,2 = 60 : 12 = 5.

Ответ: 5.

2. 3(2х-9) = 4(х-4).

6х-27 = 4х-16. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: (a-b) c = a c-b c.

6х-4х = -16+27. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

2х = 11. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = 11 : 2. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: 5,5.

3. 7х- (3+2х)=х-9.

7х-3-2х = х-9. Раскрыли скобки по правилу раскрытия скобок, перед которыми стоит знак «-»: если перед скобками стоит знак «-», то убираем скобки, знак «-» и записываем слагаемые, стоявшие в скобках, с противоположными знаками.

7х-2х-х = -9+3. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.

4х = -6. Привели подобные слагаемые по правилу: чтобы привести подобные слагаемые, надо сложить их коэффициенты и полученный результат умножить на их общую буквенную часть (т.е. к полученному результату приписать их общую буквенную часть).

х = -6 : 4. Обе части равенства разделили на коэффициент при переменной, так как если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному уравнению.

Ответ: -1,5.

3 (х-5) = 7 12 — 4 (2х-11). Умножили обе части равенства на 12 – наименьший общий знаменатель для знаменателей данных дробей.

3х-15 = 84-8х+44. Раскрыли скобки, используя распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно отдельно уменьшаемое и отдельно вычитаемое умножить на третье число, а затем из первого результата вычесть второй результат, т.е. (a-b) c = a c-b c.

3х+8х = 84+44+15. Собрали слагаемые, содержащие переменную, в левой части равенства, а свободные члены – в правой части равенства. При этом применяли свойство: любое слагаемое уравнения можно перенести из одной части равенства в другую, изменив при этом знак слагаемого на противоположный.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация