Математический язык. Математический язык и его структура

Главная / Земля

I. Известное нам понятие приведённое в название раздела требуют повторного осмысления в контексте начального образования. Ими дети пользуются уже с первых дней обучения математики. Но строгих определений они не знают и не будут знать, т.к. это материал старших классов.

Математический язык- искусственный язык . Вещь рождается вместе с человеком, а математический язык внедряется только в результате обучения. Рассмотрим компоненты математического языка.

1) Цифры или «буквы» языка: их всего 10-0,1,2,3…9. С их помощью по специальным правилам записываются числа. Этот процесс называется нумерацией. Нумерация предполагает – чтение чисел, не путать цифры и числа. Цифр всего- 10, а чисел бесконечное множество. До первого десятка цифры можно называть числами.

2) Знаки операции:

+
-
.
:

3) Знаки отношений:

= > < : .

- делится без остатка 24:.3 ; 24:. 12

4) Буквы латинского алфавита (лат.язык- это мертвый язык; он является языком науки; область возникновения- Италия)

5) Технические знаки- скобки (), , {}

Используя этот алфавит в математике образуют словосочетание носящее название «выражение». Из выражения составляют математическое выражение, которое носит название – «числовое равенство» или «числовое неравенство», «уравнение» и т.д.

II Выражение и их виды.

Запишем несколько словосочетаний математического языка: 15+21, 72:5а, 2х+18. Они отличаются друг от друга:

1)не содержит букв, называемых переменными; 15+21- числовое выражение;

2)последние записи называются выражениями с переменными.

ВЫРАЖЕНИЕ НЕ СОДЕРЖИТ ЗНАКОВ ОТНОШЕНИЙ

Одна буква- это уже выражение, одно число тоже выражение. Выполнив все действия можно найти значения числового выражения. Не все выражения имеют смысл. В первую очередь это те выражения, которые связаны с деление на ноль. 35+26:(27-27)

В младших классах, дети на это не обращают внимания, но в старших классах приходится постоянно проверять не присутствует ли в выражении деление на ноль. Для младшего школьника не имеющего смысла являются и такие: 14-23, 4:48 и др.

В выражениях из скобок сильными считаются умножение и деление, поэтому их выполняют по порядку слева на право, потом приступают к сложению, выписывают тоже по порядку.

III тождественные преобразования выражения.

Задача: Разложите на множители выражение с переменной: ах- в 2 – вх+ав.

ах-в 2 –вх+ав= - исходное выражение

Ах-вх+ав-в 2 = - использовали переменную- закон сложения

= (ах-вх)+(ав-в 2)= - использовали сочетательный закон

Х(а-в)+в(а-в)= - использовали распределительный закон относительного вычитания

=(а-в).(х+в) – искомый результат

Заметим, что одно и тоже выражение записано 5-ю способами. В таких случаях говорят, что выражение -тождественное преобразование выражения.

Определение: два выражения называется тождественно равным, если при любых значениях переменных из области определения выражений их соответствие значения равны.

В начальном курсе математики рассматривают в основном числовые выражения. Дети выполняют тождественные преобразования не обозначая его математическим значением: 35. 4=(30+5).4=30.4+5.4=120+20=140. Здесь 5 выражений тождественно равных друг другу. Объяснение мы писать не станем.

Математический язык является формальным языком людей изучающих точные науки. Считается, что он более краток и ясен, чем обычный, потому что оперирует точными понятиями, конкретен и состоит из логических высказываний с универсальными логическими символами.

История

Буквенные обозначения, которые применяются в алгебре, не использовались в древности, уравнения записывали в письменной форме. Первые сокращенные обозначения известных величин встречаются у древнегреческого математика Диофанта во II веке нашей эры. В XII веке стала известна в Европе «Алгебра» арабского астронома и математика Аль-Хорезми , переведенная на латинский язык. С этого времени появляются сокращенные обозначения для неизвестных. Когда в XVI веке Дель Ферро и Тарталья - итальянские математики - открыли правила для решения кубических уравнений, сложность этих правил потребовала усовершенствования существующих обозначений. Усовершенствование происходило в течение целого столетия. Французский математик Виета в конце XVI века ввел буквенные обозначения и для известных величин. Были введены сокращенные обозначения действий. Правда, обозначение действий еще долго выглядело у разных авторов согласно их представлению. И только в XVII веке благодаря французскому ученому Декарту алгебраическая символика приобрела вид очень близкий известному сейчас.

Знаки математического языка

Основными типами математического языка являются знаки объектов – это числа, множества, вектора и так далее, знаки отношений между объектами - «›», «=» и так далее. А также операторы или знаки операций , например, знаки «-», «+» , «F», «sin» и так далее. Сюда же необходимо отнести несобственные или вспомогательные знаки : скобки, кавычки и так далее.

Современная математика имеет в своем арсенале очень развитые знаковые системы, позволяющие отразить тончайшие оттенки мыслительного процесса. Культурный человек должен уметь говорить, писать, думать на математическом языке, поскольку это тот язык на котором «говорит» окружающая действительность. Знание математического языка дает богатейшие возможности для анализа научного мышления и всего процесса познания.

Пример

1. На обычном языке говорят: «От перемены мест слагаемых сумма не меняется». Математическим языком это будет написанно как:

a + b = b + a .

Запись a + b = b + a экономна и удобна для применения.

2. Пример обратного перевода, на математическом языке записан распределительный закон:

a (b + c) = ab + ac .

Перевод на обычный язык: «Чтобы умножить число a на сумму чисел b и c , надо число a умножить поочередно на каждое слагаемое и полученные произведения сложить».

Математика - это язык.

Давид Гилберт

Математика - это язык. Язык нужен для коммуникации, чтобы передать смысл, возникший у одного человека к другому человеку. Для этого служат предложения этого языка, составленные по определенным правилам.Почему люди учат разные языки, что это им дает кроме возможности общаться в других странах? Ответ - каждый язык имеет слова, не существующие в других языках, поэтому позволяет описывать (и видеть) такие явления, которые никогда человек бы не увидел, если бы не знал этого языка. Знание еще одного языка позволяет получить еще одно, отличное от других, видение мира. (У эскимосов в языке существует 20 разных слов для обозначения снега, в отличие от русского, где всего одно. Хотя, например, в русском есть такое слово «наст» для обозначения корки, образующейся на снегу после оттепели, за которой сразу наступили заморозки. Есть, вероятно, и другие слова, описывающие особые состояния снега).

Математика как язык науки

Представляя собой тип формального знания, математика занимает особое место в отношении наук фактуального профиля. Она оказывается хорошо приспособленной для количественной обработки любой научной информации, независимо от ее содержания. Более того, во многих случаях математический формализм оказывается единственно возможным способом выразить физические характеристики явлений и процессов, поскольку их естественные свойства и особенно отношения непосредственно не наблюдаемы. Скажем, каким образом в физических терминах описать тяготение, эффекты электромагнетизма и т.п.? Их можно представить только математически как определенные числовые соотношения в законах, фиксируемых количественными показателями. Современная наука в лице квантовой механики и чуть ранее теория относительности лишь прибавили абстрактности теоретическим объектам, вполне лишая их наглядности. Только и остается апеллировать к математике. Заявил же однажды Л. Ландау, что современному физику вовсе не обязательно знать физику, ему достаточно знать математику.

Рассмотренное обстоятельство и выдвигает математику на роль языка науки. Пожалуй, впервые отчетливо это прозвучало у Г. Галилея, одного из решающих персонажей в создании математического естествознания, господствующего вот уже более трехсот лет. Галилей писал: "Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, который сначала научился постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики".

По мере роста абстрактности естествознания эта идея находила все более широкую реализацию, а на склоне XIX в. столетия уже вошла в практику научного исследования в качестве своего рода методологической максимы. Именно так прозвучали слова известного американского физика-теоретика Д. Гиббса, когда однажды при обсуждении вопроса о преподавании английского языка в школе, он, по обыкновению молчавший на подобных совещаниях, неожиданно произнес: "Математика - тоже язык". Дескать, что вы тут все об английском да об английском, математика - также язык. Выражение стало крылатым. И вот уже вослед тому английский физикохимик, лауреат Нобелевской премии (полученной, кстати сказать, вместе с нашим Н. Семеновым) Ханшельвуд объявляет, что ученые должны знать математику как родной язык.

Характерно рассуждение замечательного отечественного исследователя В. Налимова, работавшего в области наукометрии, теории математического эксперимента, предложившего вероятностные модели языка. Хорошая наука, пишет он, говорит на языке математики. Мы, люди, почему-то устроены так, что воспринимаем Мироздание через пространство, время и число. Это значит, что мы подготовлены к тому, чтобы обращаться к математике, подготовлены эволюцией живого, то есть априорно. Пытаясь приоткрыть тайную подоплеку математической власти над ученым, Налимов замечает далее: "Меня часто обвиняют, что я применяю математику в исследовании сознания, языковедения, биологической эволюции. Но разве там есть математика как таковая? Вряд ли. Математикой я пользуюсь как Наблюдатель. Так мне удобнее мыслить, иначе я не могу. Пространство, время, число и логика - это прерогатива Наблюдателя".

Ситуация порой складывается в науке так, что без применения соответствующего математического языка понять характер физического, химического и т.п. процесса невозможно. Не случайно признание П. Дирака, что каждый новый шаг в развитии физики требует все более высокой математики. Такой факт. Создавая планетарную модель атома, известный английский физик XX в. Э. Резерфорд испытал математические трудности. Вначале его теорию не приняли: она не звучала доказательно, и виной тому явилось незнание Резерфордом теории вероятности, на основе механизма которой только и возможно было понять модельное представление атомных взаимодействий. Осознав это, выдающийся уже к тому времени ученый, обладатель Нобелевской премии, записался в семинар математика профессора Лэмба и в течение двух лет вместе со студентами прослушал курс и отработал практикум по теории вероятности. На ее основе Резерфорд смог описать поведение электрона, придав своей структурной модели убедительную точность и получив признание.

Напрашивается вопрос, что же содержится в объективных явлениях такое математическое, благодаря чему они и поддаются описанию на языке математики, на языке количественных характеристик? Это однородные единицы вещества, распределяемые в пространстве и времени. Те науки, которые дальше других прошли путь к выделению однородности, и оказываются лучше приспособленными для использования в них математики. В частности, более всего - физика. В. Ленин, отмечая серьезные успехи естествознания и прежде всего физического знания на рубеже XIX-XX столетий, видел одну из причин именно в том, что природу удалось приблизить "к таким однородным элементам материи, законы движения которых допускали математическую обработку".

Вслед за физикой идут химические дисциплины, где также оперируют атомами и молекулами, и куда методом "парадигмальной прививки" перетекают из физики многие однородные единицы вещества и поля вместе с соответствующими приемами исследований. Все более утверждается математическая химия. Много слабее математический язык вошел пока в биологию, поскольку единицы субстрата здесь еще не выделены, кроме генетики. Еще менее подготовлены к этому гуманитарные разделы научного знания. Прорыв наблюдается только в языкознании с созданием и успешным развитием математической лингвистики, а также в логике (математическая логика). Науки об обществе, конечно, трудно подвержены количественному анализу в силу специфики явлений и процессов, здесь протекающих, поскольку отмечены неповторимостью и уникальностью. Интересную попытку выявить однородные элементы в исторических процессах предпринял Л. Толстой. В романе "Война и мир" писатель вводит понятие "дифференциал исторического действия" и поясняет, что лишь допустив бесконечно малую единицу - дифференциал истории, то есть "однородные влечения людей", а затем научившись их интегрировать (брать суммы этих бесконечно малых), можно надеяться на постижение истории.

Однако подобная однородность оказывается весьма условной, поскольку "влечения людей" всегда окрашены индивидуальной уникальностью, психологически вариативны, что будет накладывать трудно учитываемые возмущения на постулируемую однородность. Вообще каждое событие в истории общества достаточно своеобразно и не поддается нивелированию в однородные единицы. Хорошая тому иллюстрация - одно рассуждение А. Пуанкаре. Как-то он прочитал у известного английского историка XIX в. Т. Карлейля констатацию: "Здесь прошел Иоанн Безземелный, и этот факт мне дороже, чем все исторические теории". Пуанкаре по сему поводу заметил: "Это язык историка. Физик бы так не сказал. Физик сказал бы: "Здесь прошел Иоанн Безземельный, и мне это совершенно безразлично, потому что больше он здесь не пройдет". Возражение математика Пуанкаре понятно: физику нужна повторяемость, лишь тогда он сможет выводить законы. Наоборот, неповторимость события - тот материал, который питает историческое описание.

Отметим, что понимание однородности как условия применимости математического описания явлений пришло в науку довольно поздно. До известного времени считали невозможным отвлечься от предметных значений, чтобы перейти к числовым характеристикам. Так, еще Г. Галилей, один из основателей математического естествознания, не хотел принимать скорость равномерного прямолинейного движения в форме. Он полагал, что действие деления пути на время физически некорректно, поскольку необходимо было делить километры, метры, и т.п. на часы, минуты, и т.п. То есть считал, недопустимым проводить операцию деления с качественно неоднородными величинами. Для Галилея уравнение скорости имело чисто содержательное значение, но отнюдь не математическое отношение величин. И лишь столетия спустя академик Петербургской академии наук Л. Эйлер, вводя в научный обиход формулу, разъяснил, что мы делим этим не путь на время и, следовательно, не километры или метры на часы, либо минуты, а одну количественную размерность на другую, одно отвлеченное числовое значение на другое. Как замечает М. Розов, Эйлер указанным актом совершил знаково-предметную инверсию, переведя содержательное описание в алгебраически-отвлеченное 63 . То есть Эйлер принимает качественно данные километры, метры, часы, минуты и т.п. в качестве абстрактной меры за единицы измерения и тогда имеем уже, скажем, не 10 метров, а 10 отвлеченных единиц, которые делим, положим, не на 2 секунды, а на две столь же абстрактные единицы. Таким приемом нам удается качественно разнородные предметы, имеющие пространственную и временную определенность инвертировать в однородность, что и позволяет применить математический количественный язык описания.

В языке все подчиняется строгим правилам, нередко похожим на математические Напри мер, отношения между фонемами напоминают математические пропорции в русском языке [б] так относится к [п], как [д] к [т] (см Артикуляционная классификация звуков) По трем членам такой «пропорции» можно «вы числить» четвертый Точно так же по одной форме слова удается обычно «вычислить» остальные его формы, если известны все формы каких либо других «похожих» слов, такие «вы числения» постоянно производят детн, когда учатся говорить (см Аналогия в грамматике) Именно благодаря своим строгим правилам язык может служить средством общения если бы их не было, людям трудно было бы понимать друг друга

Сходство этих правил с математическими объясняется тем, что математика произошла в конечном счете нз языка и сама представляет собой особого рода язык для описания колн чественных отношений н взаимного располо жения предметов Такие языки, специально предназначенные для описания каких то от дельных «частей» или сторон действительности, называют специализированными в отличне от универсальных, на которых можно говорить о чем угодно Люди создали много специали зированных языков, например систему дорож ных знаков, язык химических формул, нотную запись музыки Но среди всех этих языков математический язык ближе всего к универ сальным, потому что отношения, которые выражаются с его помощью, встречаются повсюду - ив природе, и в человеческой жиз ни, и притом это самые простые и самые важ ные отношения (больше, меньше, ближе, дальше, внутри, вне, между, непосредственно следует и т п), по образцу которых люди на учились говорить и о других, более сложных

Многие математические выражения напо минают по своему строению предложения обыч ного, естественного языка Например, в таких выражениях, как 2 < 3 или 2 + 3=5, знаки < и = играют такую же роль, как глагол (сказуемое) в предложениях естественною языка, а роль знаков 2, 3, 5 похожа на роль существительного (подлежащего) Но особен но похожи на предложения естественного язы ка формулы математической логики - наукн, в которой изучается строение точных рассуж дений, в первую очередь математических, н при этом используются математические же методы Наука эта сравнительно молода она возникла в XIX в и бурно развивалась в течение первой половины XX в Примерно в то же время воз никла и развилась абстрактная алгебра - ма тематическая наука, изучающая всевозможные отношения и всевозможные действия, которые можно производить над чем угодно (а не только над числами и многочленами, как в элементарной алгебре, которую изучают в школе)

С развитием этих двух наук, а также некото рых других, тесно связанных с ними разделов математики стало возможным применение математических средств для исследования строения естественных языков, и начиная с середины нынешнего столетня математические средства действительно применяются для этой цели Готовых методов, пригодных для линг вистических приложений, в математике не было, нх пришлось создать заново, н образцом для них послужили прежде всего методы ма тематической логики и абстрактной алгебры Так возникла новая наука - математическая лингвистика И хотя это математическая дис циплина, разрабатываемые ею понятия и ме тоды находят применение в языкознании н играют в нем все большую роль, становясь постепенно одним из его главных инструмен тов

Для чего же используются в языкознании математические средства? Язык можно пред ставить себе как своеобразный механизм, с помощью которого говорящий преобразует имеющиеся в его мозгу «смыслы» (т е свои мыслн, чувства, желания н т п) в «тексты» (т е цепочки звуков или письменных знаков), а затем преобразует «тексты» обратно в «смыс лы» Эти-то преобразования удобно изучать математически Для нх изучения служат фор мальные грамматики - сложные математи ческне системы, совсем не похожие на обычные грамматики, чтобы но настоящему понять, как они устроены, и научиться нми пользовать ся, желательно сначала познакомиться с мате матической логикой Но среди применяемых в языкознании математических методов есть н довольно простые, например различные спо собы точного описания синтаксического строе ния предложения с помощью графов

Графом в математике называют фигуру, состоящую из точек - их называют узлами графа, - соединенных стрелками Графами пользуются в самых разных науках (н не толь ко в науках), причем роль узлов могут играть какие угодно «предметы», например, родословное дерево - это граф, узлы которого - люди. При использовании графов для описания строения предложения проще всего брать в качестве узлов слова и проводить стрелки от подчиняющих слов к подчиненным. Например, для предложения Волга впадает в Каспийское море получаем такой граф:

Волга впадает в Каспийское море.

В формальных грамматиках принято считать, что сказуемое подчиняет себе не только все дополнения и обстоятельства, если они есть, но и подлежащее, потому что сказуемое - «смысловой центр» предложения: все предложение в целом описывает некоторую «ситуацию», и сказуемое, как правило, есть имя этой ситуации, а подлежащее и дополнения - имена ее «участников». Например, предложение Иван купил у Петра корову за сто рублей описывает ситуацию «покупки» с четырьмя участниками - покупателем, продавцом, товаром и ценой, а предложение Волга впадает в Каспийское море - ситуацию «впадения» с двумя участниками. Считают, кроме того, что существительное подчинено предлогу, потому что глагол управляет существительным через предлог. Уже такое простое математическое представление, казалось бы немного добавляющее к обычному, «школьному» разбору предложения, позволяет подметить н точно сформулировать много важных закономерностей.

Оказалось, что для предложений без однородных членов и не сложносочиненных построенные таким образом графы являются деревьями. Деревом в теории графов называют такой граф, в котором: 1) существует узел, н притом только один - называемый корнем,- в который не входит нн одна стрелка (в дереве предложения корнем, как правило, служит сказуемое); 2) в каждый узел кроме корня входит ровно одна стрелка; 3) невозможно, двигаясь из какого-нибудь узла в направлении стрелок, вернуться в этот узел. Деревья, построенные для предложений так, как сделано в примере, называются деревьями синтаксического подчинения. От вида дерева синтаксического подчинения зависят некоторые стилистические особенности предложения. В предложениях так называемого нейтрального стиля (см. Функциональные стили языка) соблюдается, как правило, закон проективности, состоящий в том, что если в дереве синтаксического подчинения все стрелки проведены сверху от той прямой, на которой записано предложение, то никакие две из них не пересекаются (точнее - можно провести их так, чтобы никакие две не пересекались) и ни одна стрелка не проходит над корнем. За исключением небольшого числа особых случаев, когда в предложении имеются некоторые специальные Ьлова н словосочетания (например, сложные формы глаголов: Здесь будут играть дети), несоблюдение закона проективности в предложении нейтрального стнля - верный признак недостаточной грамотности:

«Собрание обсудило выдвинутые предложения Сидоровым».

В языке художественной литературы, особенно в поэзин, нарушения закона проективности допустимы; там онн чаще всего придают предложению какую-либо особую стилистическую окраску, например торжественности, приподнятости:

Еще одно последнее сказанье

И летопись окончена моя.

(А.С. Пушкин)

или, наоборот, непринужденность, разговорность:

Какой-то Повар, грамотей, С поварни побежал своей В кабак (он набожных был правил)

(И.А. Крылов)

Стилистическая окраска предложения связана также С наличием в дереве синтаксического подчинения гнезд - последовательностей стрелок, вложенных друг в друга и не имеющих общих концов (число стрелок, образующих гнездо, называется его глубиной). Предложение, у которого дерево содержит гнезда, ощущается как громоздкое, тяжеловесное, причем глубина гнезда может служить «мерой громоздкости». Сравним, например, предложения:

Приехал собирающий нужные для новой книги сведения писатель (в дереве которого есть гнезда глубины 3) и

Приехал писатель, сооирающии сведения, нужные для новой книги (в дереве которого нет гнезд, точнее - нет гнезд глубины, большей 1).

Исследование особенностей деревьев синтаксического подчинения может дать много интересного для изучения индивидуального стиля писателей (например, нарушения проективности встречаются у А. С. Пушкина реже, чем у И. А. Крылова).

С помощью деревьев синтаксического подчинения изучают синтаксическую омонимию - явление, состоящее в том, что предложение или словосочетание имеет два разных смысла - или больше, - но не за счет многозначности входящих в него слов, а за счет различий в синтаксическом строении. Например, предложение Школьники из Костромы поехали в Ярославль может означать либо «костромские школьники поехали откуда-то (не обязательно из Костромы) в Ярославль», либо «какие-то (не обязательно костромские) школьники поехали из Костромы в Ярославль». Первому смыслу отвечает дерево Школьники из Костромы поехали в Ярославль, второму - Школьники из Костромы поехали в Ярославль.

Существуют и другие способы представления синтаксического строения предложения с помощью графов. Если представить его строение с помощью дерева, составляющими узлами будут служить словосочетания и слова; стрелки проводятся от более крупных словосочетаний к содержащимся в них более мелким и от словосочетаний к содержащимся в них словам.

Применение точных математических методов дает возможность, с одной стороны, глубже проникнуть в содержание «старых» понятий языкознания, с другой - исследовать язык в новых направлениях, которые прежде трудно было бы даже наметить.

Математические методы исследования языка важны не только для теоретического языкозна ния, но и для прикладных лингвистических за дач, в особенности для тех, которые связаны с автоматизацией отдельных языковых процессов (см Перевод автоматический), автоматическим поиском научных и технических книг и статей по заданной теме и т. п. Технической базой для решения этих задач служат электронные вычислительные машины. Чтобы решит! какую-либо задачу на такой^ машине, нужно сначала составить программу, четко н недвусмысленно определяющую порядок работы машины, а для составления программы необходимо представить исходные данные в ясном и точном виде. В частности, для составления программ, с помощью которых решаются лингвистические задачи, необходимо точное описание языка (или хотя бы тех его сторон, которые важны для данной задачи) - н именно математические методы дают возможность построить такое описание

Не только естественные, но и искусственные языки (см Искусственные языки) можно исследовать с помощью средств, разрабатываемых математической лингвистикой. Некоторые искусственные языки можно этими средствами описывать полностью, что не удается и, надо полагать, никогда не удастся для естественных языков, устроенных несравненно сложнее. В частности, формальные грамматики используются при построении, описании и анализе входных языков вычислительных машин, на которых записывается вводимая в машину информация, и при решении многих других задач, связанных с так называемым общением между человеком и машиной (все этн задачи сводятся к разработке некоторых искусственных языков)

Уходят в прошлое времена, когда языковед мог обходиться без знания математики С каждым годом эта древняя наука, соединяющая в себе черты наук естественных и гуманитарных, становится все более необходимой ученым, занимающимся теоретическим исследованием языка и практическим применением результатов этого исследования. Поэтому в наше время каждый школьник, который хочет основательно познакомиться с языкознанием или собирается сам заниматься им в будущем, должен уделять изучению математики самое серьезное внимание.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация