Принцип гюйгенса. Принцип Гюйгенса — Френеля

Главная / Суд

Гордюнин С. А. Принцип Гюйгенса //Квант. - 1988. - № 11. - С. 54-56.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Этот принцип был сформулирован Христианом Гюйгенсом в его «Трактате о свете», опубликованном в 1690 году. В то время уже не возникало больших сложностей при описании движения частиц. В свободном пространстве частицы движутся прямолинейно и равномерно; под влиянием внешних воздействий они замедляются, ускоряются, меняют направление движения (преломляются или отражаются) - и все это можно рассчитать. Вместе с тем, законы распространения волн - отражение, преломление, огибание препятствий (дифракция) не находили объяснения. И Гюйгенс предложил принцип, на основании которого это можно было бы сделать.

Очевидно, на мысль его навели рассуждения о причинах распространения волновых процессов. От камня, брошенного в воду, по поверхности бегут круговые волны. Процесс этот продолжается и после того, как камень упал на дно, т. е. когда уже нет источника, породившего первые волны. Отсюда следовало, что источниками волн являются сами волновые возбуждения. Гюйгенс сформулировал это следующим образом:

Каждая точка, до которой доходит волновое возбуждение, является в свою очередь центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Легко представить, например, как распространяются плоские и сферические волны (рис. 1). Огибающей вторичных волн через время Δt является для плоской волны плоскость, сдвинутая на расстояние c Δt , а для сферической - сфера радиусом R + c Δt , где c - скорость распространения вторичных волн, R - радиус первоначальной сферической волны.

По сути, принцип Гюйгенса в такой формулировке является просто геометрическим рецептом построения поверхности, огибающей вторичные волны. Эта поверхность отождествляется с волновым фронтом, и таким образом определяется направление распространения волны.

Гюйгенс первоначально сформулировал свой принцип для световых волн и применил его для вывода законов отражения и преломления света на границе раздела сред. Прежде всего, сам факт наличия отраженной и преломленной волн непосредственно следовал из принципа Гюйгенса, и это уже было большим успехом. По Гюйгенсу, каждая точка границы сред по мере достижения ее фронтом падающей волны становится источником вторичных волн, которые распространяются в обе граничащие среды. Результатом наложения этих вторичных волн в первой среде, из которой падает волна, является волна отраженная, а результатом наложения вторичных волн во второй среде - волна преломленная.

Конечно, мы на основании принципа Гюйгенса не можем ответить на вопрос об интенсивности отраженной и преломленной волн, поскольку для этого нужно знать хотя бы их физическую природу (которая в принципе Гюйгенса вообще не «участвует»). Но геометрические законы отражения и преломления совершенно не зависят ни от физической природы волн, ни от конкретного механизма их отражения и преломления. Они для всех волн одинаковы.

Пусть υ - скорость плоской падающей волны, α - угол ее падения (рис. 2). Тогда фронт падающей волны бежит по границе раздела двух сред со скоростью \(~\frac{\upsilon}{\sin \alpha}\). И отраженная, и преломленная волны порождаются падающей, поэтому их фронты бегут вдоль границы с той же скоростью, т. е.

\(~\frac{\upsilon}{\sin \alpha} = \frac{\upsilon_1}{\sin \alpha_1} = \frac{\upsilon_2}{\sin \alpha_2}\) .

Углы α 1 и α 2 определяют направления распространения фронтов отраженной и преломленной волн. Но так как в плоской волне лучи перпендикулярны волновым фронтам, то эти же соотношения выполняются и для отраженных и преломленных лучей.

Объяснение законов преломления и отражения явилось сильным аргументом в пользу справедливости принципа Гюйгенса. Однако, естественно, он вызывал и много сомнений и вопросов. Почему нет обратной волны (ведь вторичные источники испускают сферические волны, распространяющиеся и против фронта)? Почему свет проходит сквозь отверстие прямолинейно (ведь вторичные волны должны распространяться и в область геометрической тени)? Сам Гюйгенс считал, что все это связано с малой интенсивностью вторичных волн. Но ведь звуковые волны загибаются - мы слышим звук, источник которого находится за углом.

Ответы на эти и другие вопросы дал Огюстен Френель в начале XIX века. Он дополнил принцип Гюйгенса важным и естественным положением:

Результирующее волновое возмущение в данной точке пространства является следствием интерференции элементарных вторичных волн Гюйгенса.

Вторичные волны испускаются «источниками», амплитуда и фаза колебаний которых определяются первоначальным возмущением, и поэтому такие источники когерентны. Совокупное действие этих источников, т. е. интерференционный эффект, заменяет идею Гюйгенса об огибающей, которая в теории Френеля приобрела ясный физический смысл как поверхность, где результирующая волна вследствие интерференции имеет заметную интенсивность. Модифицированный принцип Гюйгенса - Френеля позволяет более полно исследовать вопрос о распространении волн в неоднородной среде (в виду математической сложности этот вопрос выходит за рамки школьного курса физики). Итак, надо ясно представлять как достоинства (простоту и наглядность), так и недостатки (отсутствие физического содержания) первого принципа теории распространения волн - принципа Гюйгенса.

Цель урока

Познакомить учащихся с особенностями распространения света на границе раздела двух сред, дать им сведения о законах, которым подчиняется это явление, дать объяснение этого явления с точки зрения волновой теории света.

№ п/п Этапы урока Время, мин Приемы и методы
1 Организационный момент 2
2 Проверка знаний 10 Работа на компьютере с тестом. Тест № 1
3 Объяснение нового материала по теме «Отражение света» 15 Лекция
4 Закрепление изученного материала 15 Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»
5 Подведение итогов 2 Фронтальная беседа
6 Объяснение домашнего задания 1

Домашнее задание: § 60, задача № 1023 (Р. Дрофа, М., 2001)

Проверка знаний

Тест. Развитие взглядов на природу света. Скорость света


Новый материал

Принцип Гюйгенса

Волновая теория, в отличие от корпускулярной, рассматривает свет как волну, подобно механическим волнам. В основу волновой теории был положен принцип Гюйгенса, согласно которому каждая точка, до которой доходит волна, становится центром испускания вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. С помощью принципа Гюйгенса были объяснены законы отражения и преломления.

Демонстрация. С помощью волновой ванны продемонстрировать образование сферической волны при прохождении плоской волны через отверстие.

Закон отражения. С помощью принципа Гюйгенса можно вывести закон, которому подчиняются волны при отражении от границы раздела сред.

Рассмотрим отражение плоской волны. Волна называется плоской , если поверхности равной фазы (волновые поверхности ) представляют собой плоскости. На рисунке: MN – отражающая поверхность, прямые A 1 A и B 1 B – два луча падающей плоской волны (они параллельны друг другу). Плоскость AC – волновая поверхность этой волны.

Угол α между падающим лучом и перпендикуляром к отражающей поверхности в точке падения называют углом падения.

Волновую поверхность отраженной волны можно получить, если провести огибающую вторичных волн, центры которых лежат на границе раздела сред. Различные участки волновой поверхности AC достигают отражающей границы неодновременно. Возбуждение колебаний в точке A начнется раньше, чем в точке B , на время Δt = CB / v (v – скорость волны).

В момент, когда волна достигнет точки B и в этой точке начнется возбуждение колебаний, вторичная волна с центром в точке A уже будет представлять собой полусферу радиусом r = AD = v Δt = CB . Радиусы вторичных волн от источников, расположенных между точками A и B , меняются так, как показано на рисунке. Огибающей вторичных волн является плоскость DB , касательная к сферическим поверхностям. Она представляет собой волновую поверхность отраженной волны. Отраженные лучи AA 2 и BB 2 перпендикулярны волновой поверхности DB . Угол γ между перпендикуляром к отражающей поверхности и отраженным лучом называют углом отражения .

Так как AD = CB и треугольники ADB и ACB – прямоугольные, то DBA = CAB . Но α = CAB и γ = DBA как углы с перпендикулярными сторонами. Следовательно, угол отражения равен углу падения : α = γ .

Кроме того, как вытекает из построения Гюйгенса, падающий луч, луч отраженный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости . Эти два утверждения представляют собой закон отражения света .

Если обратить направление распространения световых лучей, то отраженный луч станет падающим, а падающий – отраженным. Обратимость хода световых лучей – их важное свойство.

Закрепление изученного материала

Работа на компьютере с рабочими листами. Модель «Отражение и преломление света»

Рабочий лист к уроку

Примерные ответы
«Отражение света»

Ф. И. ___________________________________________________________

1.

В каком случае происходит явление отражения света?

Ответ: при падении луча света на границу раздела двух оптически различных сред .

2.

В каком случае отраженный луч совпадает с падающим лучом?

Ответ: при падении луча перпендикулярно границе раздела .

3.

Чему при этом равен угол падения?

Чему равен угол отражения?

4.

Направьте падающий луч на границу раздела двух сред так, чтобы угол падения был равен 30° . Чему равен угол отражения?

Ответ: 30°

5.

Увеличьте угол падения на 10° . Чему равен угол падения?

Ответ: 40°

Чему равен угол отражения?

Ответ: 40°

6.

Сделайте вывод.

Ответ: угол падения равен углу отражения.

7.

Расположите осветитель на отметке 60° . Чему равен угол между падающим и отраженным лучами?

Ответ: 120°

8.

Уменьшите угол падения на 30°. Что произошло с углом между падающим и отраженным лучами?

Ответ: уменьшился на 60°


Обсудить ответы на вопросы 7, 8, 9. Обратить внимание на то, что луч падающий, отраженный и перпендикуляр, восставленный в точку падения, лежат в одной плоскости. Повторить закон отражения света.

В полном варианте: показать обратимость световых лучей, решить задачи на определение углов падения, отражения и расположения зеркала.

Каждую точку на пути распространения волны можно считать источником вторичных волн.

Представьте себе волну на поверхности водоема. Проще всего, казалось бы, описать волновое движение воды чисто механически - рассчитать силы гидродинамического давления, действующие на частицы водной поверхности снизу, и противодействующие им силы гравитационного притяжения, суммарное воздействие которых и приводит к тому, что поверхность ритмично колышется вверх-вниз. Однако в конце XVII века голландский физик Христиан Гюйгенс представил себе волновую картину несколько по-иному и вывел, благодаря этому, мощный принцип, в равной мере применимый к любым волнам - начиная от волн на водной поверхности и заканчивая гамма-излучением далеких галактик.

Смысл принципа Гюйгенса проще всего понять, если представить себе, что гребень волны на водной поверхности на мгновение застыл. Теперь представьте, что в этот миг вдоль всего фронта волны в каждую точку гребня брошено по камню, в результате чего каждая точка гребня становится источником новой круговой волны. Практически всюду вновь возбужденные волны взаимно погасятся и не проявятся на водной поверхности. И лишь вдоль фронта исходной волны вторичные маленькие волны взаимно усилятся и образуют новый волновой фронт, параллельный предыдущему и отстоящий от него на некоторое расстояние. Именно по такой схеме, согласно принципу Гюйгенса, и распространяется волна.

Так почему столь парадоксальный, казалось бы, взгляд на столь обычное природное явление, как распространение волн, оказывается полезен ученым? Представьте, что будет при столкновении волны с препятствием на пути ее распространения. Вернемся к примеру волны на водной поверхности и представим, что волна ударилась о бетонный волнорез под углом к нему. Согласно принципу Гюйгенса, из тех точек волнового фронта, которые пришлись на волнорез, вторичные волны распространяться не будут, а из остальных будут. В результате волна продолжит свой путь и восстановится позади волнореза. То есть, фактически, при столкновении с препятствием волна спокойно огибает его, и любой моряк вам это подтвердит. (Это свойство волн называется дифракцией.)


Имеется и целый ряд других полезных применений принципа Гюйгенса при рассмотрении волновых явлений - порой весьма неожиданных. Он широко используется в волновой оптике и в телекоммуникационной инженерии, где волны (световые и радио- соответственно) регулярно сталкиваются с препятствиями на пути их распространения и огибают их.

К этому открытию Гюйгенса привели занятия астрономией, для развития которой он сделал немало, в частности, став в 1655 году первооткрывателем Титана - самого большого спутника Сатурна. Автоматическая космическая станция НАСА «Кассини» в 2004 году должна достигнуть Сатурна и отправить на поверхность Титана спускаемый аппарат для исследования состава его атмосферы и грунта. Этот спускаемый аппарат называется «Гюйгенс». Так наука чтит своих основателей.

Принцип Гюйгенса объясняет распространение волн, согласующееся с законами геометрической оптики, но не может объяснить явлений дифракции. Огюстен Жан Френель в 1815 году дополнил принцип Гюйгенса, введя представления о когерентности и интерференции элементарных волн, что позволило рассматривать на основе принципа Гюйгенса - Френеля и дифракционные явления.

Принцип Гюйгенса-Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.


Густав Кирхгоф придал принципу Гюйгенса строгий математический вид, показав, что его можно считать приближенной формой теоремы, называемой интегральной теоремой Кирхгофа.

Фронтом волны точечного источника в однородном изотропном пространстве является сфера. Амплитуда возмущения во всех точках сферического фронта волны, распространяющейся от точечного источника, одинакова.

Дальнейшим обобщением и развитием принципа Гюйгенса является формулировка через интегралы по траекториям, служащая основой современной квантовой механики.

Использованы материалы: Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».

Комментарии: 0

    Основы явления дифракции можно понять, если обратиться к принципу Гюйгенса, согласно которому каждая точка на пути распространения светового луча может рассматриваться как новый независимый источник вторичных волн, и дальнейшая дифракционная картина оказывается обусловленной интерференцией этих вторичных волн. При взаимодействии световой волны с препятствием часть вторичных волн Гюйгенса блокируется.

    Волны - один из двух путей переноса энергии в пространстве (другой путь - корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него. Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях.

    Что заставляет взаимодействовать все в нашей Вселенной? Ускоряются ли тела или замедляются, меняют свое направление или мчатся вперед – почему они ведут себя именно так? Какие законы являются общими и для малейших частиц и для Галактик? С чего все началось, как развивается и как работает? Эти и другие вопросы волновали человека с самых древних времен… Где же ключ к пониманию тайн механической Вселенной? США, 1985 год.

    Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной. Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм - такой примерно звукоряд. Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

    Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн.

С давних времён люди заметили отклонение световых лучей при нахождении какого-то препятствия перед ними. Можно обратить внимание на то, как сильно искажается свет при попадании в воду: луч «ломается» из-за так называемого эффекта дифракции света. Дифракцией света называется огибание или искажение света из-за различных факторов вблизи.

Работу подобного явления описал Христиан Гюйгенс. После определённого количества проведённых экспериментов со световыми волнами на водной поверхности, он предложил науке новое объяснение такого феномена и дал ему название “волновой фронт”. Таким образом, Христиан дал возможность понять, как будет вести себя луч света при попадании на какую-то поверхность другого типа.

Его принцип звучит следующим образом:

Точки поверхности, заметные в определённый момент времени, могут быть причиной для вторичных элементов. Площадь, которая прикасается ко всем вторичным волнам, считается волновой сферой в последующие отрезки времени.

Он объяснил, что все элементы следует рассматривать как начало сферических волн, которые имеют название как вторичные волны. Христиан заметил, что волновой фронт по своей сути является совокупностью этих точек касания, отсюда и выплывает весь его принцип. Кроме этого, вторичные элементы представляются сферической формы.

Стоит запомнить, что волновой фронт - это точки геометрического смысла, до которых доходят колебания к определённому моменту времени.

Вторичные элементы Гюйгенса представляются не как настоящие волны, а лишь дополнительные, имеющие форму сферы, используемые не для расчёта, а лишь приблизительного построения. Поэтому эти сферы вторичных элементов по своей сути имеют только огибающее действие, что позволяет образовываться новому волновому фронту. Этот принцип хорошо объясняет работу дифракции света, однако решает вопрос только направления фронта, а не объясняет, откуда появляется амплитуда, интенсивность волн, распыление волн и их обратное действие. Френель использовал принцип Гюйгенса для устранения этих недостатков и дополнения его работы физическим смыслом. Через некоторое время учёный представил свою работу, которая полностью подержалась научным сообществом.

Ещё во времена Ньютона учёные-физики имели некоторое представление о работе дифракции света , но некоторые моменты оставались для них загадкой из-за небольших возможностей технологий и знаний об этом явлении. Так, описать дифракцию на основе корпускулярной теории света было невозможным.

Независимо друг от друга два учёных разрабатывали качественное объяснение этой теории. Французский физик Френель взялся за дополнение принципа Гюйгенса физическим смыслом, так как изначальная теория была представлена только с математической точки зрения. Таким образом, геометрический смысл оптики изменился с помощью трудов Френеля.

Изменения в принципе выглядели так - Френель физическими методами доказал, что вторичные волны интерферируют в точках наблюдения. Свет может быть замечен во всех участках пространства, где сила вторичных элементов умножается под действием интерференции: так, что если замечается затемнение, можно предположить, волны взаимодействуют и нейтрализуются под влиянием друг друга. В случае если вторичные волны попадают в площадь со схожими типами, состояниями и фазами, то замечается сильный всплеск света.

Таким образом, становится понятным, почему нет обратной волны. Так, когда вторичная волна возвращается обратно в пространство, они вступают во взаимодействие с прямой волной и путём взаимного погашения пространство оказывается спокойным.

Метод зон Френеля

Принцип Гюйгенса - Френеля даёт чёткое представление о возможном распространении света . Применения вышеописанных методов стало называться метод зон Френеля, что позволяет использовать новые и неординарные способы решения задач на нахождение амплитуды. Так, он заменил интегрирование суммированием, что очень положительно приняли в научном сообществе.

На вопросы как работают некоторые важные физические элементы, например, как дифракция света, принцип Гюйгенса - Френеля даёт чёткие ответы. Решение задач стало возможным только благодаря подробному описанию работы этого явления.

Вычисления, представленные Френелем и его методом зон, сами по себе являются трудной работой, однако выведенная учёным формула немного облегчает этот процесс, давая возможность найти точное значение амплитуды . Ранний принцип Гюйгенса не был способен на это.

Необходимо обнаружить на площади точку колебания, которая впоследствии может служить важным элементом в формуле. Площадь будет представлена в виде сферы, так что по методу зон можно разбить её на кольцевые участки, которые позволяют с точностью определить расстояния от краёв каждой зоны. Проходящие по этим зонам точки имеют разное колебание, соответственно, и возникает разница в амплитуде. В случае монотонного убывания амплитуды, можно представить несколько формул:

  1. А рез = А 1 – A 2 + A 3 – A 4 +…
  2. А 1 > A 2 > A 3 > A m >…> A ∞

Следует помнить, что довольно большое количество других физических элементов влияют на решение задачи подобного типа, которые тоже нужно искать и учитывать.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация