Радиоактивные аварии. Каковы последствия радиационной катастрофы. Статистика радиационных аварий в мире: мнение экспертов

Главная / Налоги

Радиационная авария , как и химическая — следствие несоблюдения правил безопасности. Радиационная авария может произойти на месте использования ядерно-энергетической установки (атомной электростанции), а также вследствие повреждения оборудования или резервуара, из-за чего радиационные продукты или ионизирующее излучение вышли за допустимые пределы, предусмотренные проектом эксплуатации. В итоге происходит облучение населения и загрязнение окружающей среды радиацией. Радиационные аварии могут сопровождаться взрывами или пожарами: яркие примеры или Фукусимы известен каждому.

Радиационное облучение у человека нарушает работу его внутренних органов. Кроме того, под влиянием ионизирующего излучения у человека развивается лучевая болезнь.

Радиационное загрязнение среды — последствия воздействия альфа-, бета- и гамма-лучей. Излучение выделяют продукты деления ядерной реакции при аварии. Это радиоактивный шлак, осколки ядерного продукты, пыль. Также в результате облучения могут стать радиоактивными различные предметы, материалы, вода, грунт.

Как подготовиться к радиационной аварии

Соберите наиболее подробную и достоверную информацию обо всех производственных предприятиях и других объектах, на которых может вестись работа с радиоактивными веществами. В ближайшем управлении ГО и ЧС узнайте обо всех способов оповещения населения в случае аварии на объектах или других непредвиденных обстоятельствах. Убедитесь, что оборудование для подачи сигналов в исправности. Создайте запасы необходимых средств защиты и продовольствия, которые пригодятся в случае аварии (герметизирующие материалы, продовольствие, йодные препараты, сода итд.).

Как действовать при оповещении о радиационной аварии

Если вы в этот момент находитесь на улице — немедленно защитите органы дыхания (платок, шарф). Поспешите домой, закройте все окна и двери. Верхнюю одежду снимите и уложите в пластиковый пакет, затем примите душ. Включите телевизор и радио для получения информации и сообщений от правительства. Изолируйте помещение: загерметизируйте вентиляционные отверстия и все щели, через которые в ваш дом может попасть радиоактивная пыль, зараженный воздух. Старайтесь не подходить к местам, где вы заделали такие щели.

Сделайте продуктов, уложив их в полиэтиленовый пакет, плотно завернув. Запас воды сделайте в герметичных емкостях.

Для защиты органов дыхания используйте респиратор. При неимении его подойдет и ватно-марлевая повязка, подручные изделия из ткани, предварительно смоченные водой. Принимайте йодные таблетки по таблетке йодистого калия (0.125 г) в день при получении надлежащего указания по радио или ТВ. Для детей до четырех лет дозировку препаратов нужно снизить втрое. Если йодистого калия нет, то используйте йодистый раствор: 3-5 капель 5% раствора йода на стакан воды. Для детей до двух лет — 1-2 капли.

Как действовать на радиоактивно загрязненной местности

Чтобы не получить или хотя бы ослабить его, соблюдайте следующее:

  • Покидайте помещения только на короткий срок. При этом надевайте респиратор, защитные перчатки, плащ, сапоги. Чем меньше участков вашего тела открыто, тем лучше.
  • Не снимайте одежду на открытой местности, не садитесь на землю.
  • Не курите.
  • Не собирайте и .
  • Вокруг своего дома увлажняйте территорию, регулярно делайте влажную уборку в самом доме.
  • Когда входите в помещение — вымойте обувь и почистите верхнюю одежду.
  • Используйте только из проверенных источников. Еду покупайте в магазинах.
  • Перед едой тщательно мойте руки, полощите рот 0.5% раствором питьевой соды.

Как действовать при эвакуации

При подготовке к держите под рукой средства индивидуальной защиты (также накидки, плащи из пленки, перчатки, резиновые сапоги). Соберите предметы одежды и обувь по сезону в чемодан или рюкзак. Туда же положите документы, деньги, однодневный запас пищи. Затем чемодан или рюкзак оберните полиэтиленовой пленкой.

Перед уходом из дома отключите все , газ. Выкиньте все скоропортящиеся продукты. Повесьте на двери объявление «В квартире №__ никого нет». При посадке на транспорт или формировании пешей колонны зарегистрируйтесь у представителя эвакокомиссии. Прибыв в безопасный район, примите душ и смените белье и обувь на незараженные.

11 марта 2011 года на Японию обрушилось землетрясение силой 9,0 баллов по шкале Рихтера, приведшее к разрушительному цунами. В одном из наиболее пострадавших регионов находилась атомная станция Фукусима Даичи, на которой, через 2 дня после землетрясения, произошел взрыв. Эту аварию назвали самой масштабной со времен взрыва на Чернобыльской АЭС в 1986 году, - самой известной, но далеко не единственной радиационной катастрофы, произошедшей за последние полвека.

29 сентября 1957 года произошла авария, получившая название «Кыштымская», - первая в СССР чрезвычайная ситуация подобного рода: в хранилище радиоактивных отходов на химкомбинате «Маяк» (город Озерск, Челябинская обл.) взорвалась емкость.

Специалисты оценили мощность взрыва, радиоактивное облако от которого прошло над Челябинской, Свердловской и Тюменской областями, образовав след площадью свыше 20 тысяч кв.км, в 70-100 тонн в тротиловом эквиваленте.

Правительство СССР отказалось разглашать подробности аварии, засекретив информацию вплоть до 1990 года.По подсчетам зарубежных изданий от радиации погибло,как минимум, 200 чел.Радиационному заражению подверглось 500 км окружающей местности.

Спустя неделю у местных жителей начали проявляться признаки лучевой болезни.В общей сложности из зараженной местности было эвакуировано 10 тысяч человек,из них 5 тысяч подверглись разовому облучению до 100 рентген в первые часы после взрыва

10 октября 1957 года в Уиндскейле (Великобритания) произошла крупная авария на одном из двух реакторов, первоначально предназначавшихся для наработки оружейного плутония, а затем переоборудованных для производства трития.

Новая цель требовала более высоких температур, чем те, на которые был рассчитан реактор. В результате в активной зоне возник пожар, продолжавшийся в течение 4 суток. Всего сгорело около 11 тонн урана.

В результате аварии получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии.

Что же касается Великобритании, то исследования, проведенные в 2007 году, показали, что выброс зараженной воды в окружающую среду привел к более чем 200 случаям заболевания раком у местных жителей.

3 января 1961 года взорвался, убив трех рабочих и вызвав расплавление топливных элементов, стационарный реактор малой мощности номер 1, или SL-1, расположенный в пустыне, в 65 км от городка Айдахо-Фоллз, штат Айдахо, США.

Причиной катастрофы послужил неправильно вынутый стержень регулирования мощности реактора, но даже 2 года расследований не дали конкретного представления о действиях персонала до момента аварии.

После взрыва, приведшему к прекращению ядерной реакции, погибших операторов вынесли из здания, где находился реактор. Их тела оказались настолько радиоактивными, что всех трех пришлось похоронить в свинцовых могильниках.

Нельзя не отметить, что хотя реактор и выбросил в атмосферу радиоактивные материалы, их было немного, а удаленное местоположение SL-1 позволило минимизировать урон, нанесенный населению и окружающей среде.

4 июля 1961 года на советской подводной лодке К-19, которая находилась в тот момент в северной части Атлантического океана, заметили утечку реактора.

Не имея других вариантов, члены команды заходили в отделение реактора и пытались ликвидировать аварию собственноручно, подвергая себя дозам радиации, не совместимым с жизнью. Все 8 членов экипажа, которые чинили утечку.

Радиационному заражению также подвергся остальной экипаж, сама подлодка и баллистические ракеты на ней. Когда К-19 встретилась с кораблем, принявшим их сигнал о бедствии, ее отбуксировали на базу.

Затем, во время ремонта, который длился 2 года, была заражена окружающая местность, а также получили облучение рабочие дока. В последующие несколько лет еще 20 членов экипажа скончалось от лучевой болезни.

В апреле 1967 года произошел очередной радиационный инцидент в ПО «Маяк»: озеро Карачай, которое с 1951 года использовалось предприятием для сброса жидких радиоактивных отходов, сильно обмелело.

Из-за понижения уровня воды оголилось 2,3 га прибрежной полосы и 2-3 га дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 кюри радиоактивности.

Последние десятилетия озеро Карачай окончательно «убирается с лица Земли», а именно - засыпается грунтом. Однако под озером уже созрела новая опасность - слой зараженной грунтовой воды общей площадью более 10 кв.км.

21 января 1968 года в воздухе загорелся бомбардировщик ВВС США Б-52, который нес дежурство на американской военной базе North Star Bay в Гренландии и совершал полет в рамках операции «Хромовый купол», с четырьмя водородными бомбами на борту

«Хромовый купол» - американская военная операция времен Холодной войны, в ходе проведения которой в воздухе постоянно находились бомбардировщики с ядерными зарядами, готовые в любой момент нанести удар по целям в Советском Союзе.

Ближайшую аварийную посадку загоревшегося Б-52 можно было совершить на авиабазе Туле в Гренландии, но времени на приземление не осталось, и команда катапультированием покинула горящий самолет.

Когда бомбардировщик упал, ядерные боезаряды детонировали, что спровоцировало радиоактивное заражение местности. Инцидент повлек немедленное закрытие программы «Хромовый купол» и разработку более стабильной взрывчатки.

В 1969 году произошла авария на швейцарском подземном ядерном реакторе в Люценсе. Стоит отметить, что Швейцария обратилась к промышленному использованию ядерной энергии позже других развитых стран.

Авария, произошедшая на реакторе под названием Кантон Во, постройка которого началась лишь в 1962 году, была классифицированная как одна из десяти наиболее серьезных ядерных катастроф в мире.

Население и окружающая среда не пострадали, но пещеру, где находился реактор, зараженную радиоактивными выбросами, пришлось навсегда замуровать.

17 октября 1969 года произошла радиационная авария во Франции: на АЭС «Святой Лаврентий» из-за неправильной загрузки топливного канала взорвался запущенный реактор мощностью 500 мВт. В результате часть элементов расплавилась.

18 января 1970 года радиационная катастрофа произошла на заводе «Красное Сормово» (Нижний Новгород, Россия): при строительстве атомной подводной лодки К320 случился неразрешенный запуск реактора, который отработал на запредельной мощности.

При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно и находилось около 1000 рабочих, трое из которых скончались через неделю. Заражения местности удалось избежать из-за закрытости цеха.

В работах по ликвидации последствий аварии приняло участие в общей сложности более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

18 декабря 1970 года на площадке для ядерных испытаний Юкка-Флэт (штат Невада, США), которая находится в часе езды от Лас-Вегаса, проводилась детонация 10-килотонной атомной бомбы, закопанной на глубине 275 метров под землей.

В процессе разрыва бомбы плита, предназначенная для удержания взрыва под землей, треснула, и в воздух поднялся столб радиоактивных осадков, в результате чего было облучено 86 человек, принимавших участие в испытаниях.

Кроме того, что радиационные осадки выпали в округе, их также отнесло на север Невады, в штаты Айдахо и Калифорнию, а также в восточные части штатов Орегон и Вашингтон. В 1974 году два специалиста, которые присутствовали при детонации.

Семичасовой пожар, вспыхнувший 22 марта 1975 года на одном из реакторов АЭС «Браунс Ферри» (штат Алабама, США), обошелся правительству в $10 млн.

Все случилось после того, как рабочий с зажженной свечой в руке полез заделать протечку воздуха в бетонной стене. Огонь был подхвачен сквозняком и распространился через кабельный канал. АЭС была выведена из строя на год.

Через 10 лет после аварии, в 1985-м, реактор был остановлен по соображениям безопасности. Владельцы станции потратили $1,8 млрд на модернизацию оборудования, и в мае 2007 года АЭС возобновила работу.

На сегодняшний день «Браунс Ферри» представляет собой три усовершенствованных блока с водяными кипящими реакторами BWR. Мощности блоков находятся в пределах от 1093 до 1105 МВт.

22 февраля 1977 года один из рабочих электростанции Ясловске-Бохунице (Чехословакия) во время обычной смены топлива неверно вынул стержень регулирования мощности реактора.

Эта простая ошибка спровоцировала масштабную утечку. Инцидент заработал 4 уровень по Международной шкале ядерных событий от 1 до 7.

Реактор был экспериментальной разработкой для работы с ураном. Стоит отметить, что этот первый в своем роде, а также первый среди атомных реакторов на территории Чехословакии комплекс известен множеством аварий - по протоколу закрыть его.

28 марта 1979 года на АЭС Тримайл-Айленд (штат Пенсильвания) в результате серии сбоев в работе оборудования и грубых ошибок операторов произошла авария, ставшая самым серьезным инцидентом в атомной энергетике США.

На втором энергоблоке станции не сработала система охлаждения, что вызвало расплавление 53% ядерных топливных элементов реактора. Однако полного расплавления и, как следствие, катастрофы мирового масштаба удалось избежать.

Среди последствий аварии - выброс в атмосферу инертных радиоактивных газов - ксенона и йода. Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды.

Из района, подвергшегося радиационному воздействию, в общей сложности было эвакуировано 200 тысяч человек. Официальная статистика утверждает, что в результате инцидента никто из людей не погиб и даже не получил серьезной дозы облучения.

Работы по устранению последствий катастрофы завершились только в 1993 году, а их стоимость составила $975 млн. Аварийный энергоблок полностью закрыт. Другой энергоблок станции продолжает работать и сегодня.

Нельзя не отметить, что эта авария заставила многих американцев пересмотреть свое мнение насчёт использования атомной энергии, а строительство новых реакторов, которое постоянно увеличивалось с 1960-х годов, значительно замедлилось.

26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в истории человечества, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны.

По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора.

В атмосферу было выброшено 190 тонн радиоактивных веществ, в воздухе оказалось 8 тонн радиоактивного топлива реактора. Другие опасные вещества продолжали покидать блок в результате пожара, длившегося почти две недели.

В результате аварии произошло радиоактивное заражение в радиусе 30 км - пострадала северная часть Украины, Беларусь и запад России. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму.

При взрыве реактора погибло 50 человек, но количество людей, которые оказались на пути радиоактивного облака остается неизвестным.

В докладе Всемирной атомной ассоциации говорится о более чем миллионе людей, которые могли подвергнуться воздействию радиации.

КОНТРОЛЬНЫЕ ВОПРОСЫ:

    Определение понятия «радиационная авария».

    Классификация радиационных аварий по последствиям.

    Международная шкала аварий на АЭС. Аварии и происшествия.

    Стадии развития радиационной аварии.

    Этапы радиационно-защитных мероприятий на разных стадиях развития радиационной аварии.

    Зонирование загрязненных территорий.

    Мероприятия при обнаружении локальных радиоактивных загрязнений.

Авария радиационная - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к незапланированному облучению людей или радиоактивному загрязнению окружающей среды, превышающим величины, регламентированные для контролируемых условий.

Радиационные аварии, не связанные с АЭС, по их последствиям делят на 5 групп:

I – аварии, которые не приводят к облучению персонала, лиц из населения (выше ДП) или загрязнению производственной и окружающей среды, не создают реальной опасности переоблучения или загрязнения и требуют расследования причин их возникновения;

II – аварии, в результате которых персонал и лица из населения получили дозу внешнего облучения (выше ДП);

III – аварии, при которых была загрязнена производственная или окружающая среда (выше ДУ);

IV – аварии, в результате которых персонал и лица из населения получили дозу внешнего и внутреннего облучения выше значений, предусмотренных НРБ-99;

V – аварии, в результате которых произошло внешнее и внутреннее облучение персонала, лиц из населения и загрязнение окружающей среды (группы III и IV настоящей классификации).

Международная шкала аварий на аэс

Аварии

VII уровень – Глобаль ная . Выброс в окружающую среду большей части радиоактивных продуктов, накопленных в активной зоне, в результате которого будут превышены дозовые пределы для запроектных аварий. Возможны острые лучевые поражения.

Длительное воздействие на здоровье населения, проживающего на большой территории, включающей более чем одну страну.

Длительное воздействие на окружающую среду.

VI уровень – Тяжелая . Выброс в окружающую среду большого количества радиоактивных продуктов, накопленных в активной зоне, в результате которого дозовые пределы для проектных аварий будут превышены, а для запроектных – нет. Для ослабления серьезного влияния на здоровье населения необходимо введение планов мероприятий по защите персонала и населения в случае аварий в зоне радиусом 25 км, включающих эвакуацию населения.

V уровень - С риском для ок ружаю щей среды. Выброс в окружающую среду такого - количества продуктов деления, который приводит к незначительному повышению дозовых пределов для проектных аварий и радиационно эквивалентных выбросу порядка сотни ТБк 131 I Разрушение большей части активной зоны, вызванное механическим воздействием или плавлением с превышением максимального проектного предела повреждения твэлов.

В некоторых случаях требуется частичное введение планов мероприятий по защите персонала и населения в случае аварий (местная йодная профилактика и/или частичная эвакуация) для уменьшения влияния облучения на здоровье населения.

IV уровень - В преде лах АЭС . Выброс радиоактивных продуктов в окружающую среду в количестве, превышающем значения для уровня 3, который привел к переоблучению части персонала, но в результате которого не будут превышены дозовые пределы для населения. Однако требуется контроль продуктов питания населения.

Происшествия

III уровень – Серьез ное . Выброс в окружающую среду радиоактивных продуктов выше допустимого суточного, но не превышающий 5-кратного допустимого суточного выброса газообразных летучих радиоактивных продуктов и аэрозолей и/или 1/10 годового допустимого сброса со сбросными водами.

Высокий уровень радиации и/или большое загрязнение поверхностей на АЭС, обусловленные отказом оборудования или ошибками эксплуатации. События, в результате которых происходит значительное переоблучение работающих (доза > 50 мЗв).

При рассматриваемом выбросе не требуется принимать защитных мер за пределами площадки. Происшествия, при которых дальнейшие отказы в системах безопасности должны привести к авариям или ситуациям, где системы безопасности не будут способны предотвратить аварию, если произойдет исходное событие.

II уровень - Средней тяжести. Отказы оборудования или отклонения от нормальной эксплуатации, которые хотя и не влияют непосредственно на безопасность станции, но способны привести к значительной переоценке мер по безопасности.

I уровень – Незна читель ное . Функциональные отклонения в управлении, которые не представляют какого-либо риска, но указывают на недостатки в обеспечении безопасности. Эти отклонения могут возникнуть из-за отказа оборудования, ошибки эксплуатационного персонала или недостатков руководства по эксплуатации (такие события должны отличаться от отклонений без превышения пределов безопасной эксплуатации, при которых управление станцией осуществляется в соответствии с установленными требованиями. Эти отклонения, как правило, считаются «ниже уровня шкалы»).

0 уровень - Ни же уро вня шка лы . Не влияет на безопасность.

Для практических целей по основному этиологическому фактору принято выделять следующие возможные варианты аварийного облучения:

1. Воздействие внешнего излучения (гамма- и рентгеновского, бета-гамма-, гамма-нейтронного и др.).

2. Внутреннее облучение от попавших в организм радионуклидов.

3. Сочетанное радиационное воздействие внешних источников излучения и внутреннего облучения.

4. Комбинированное воздействие радиационных и нерадиационных факторов.

ОСТРЫЕ ВОЗДЕЙСТВИЯ ВНЕШНЕГО ИЗЛУЧЕНИЯ

В литературе представлены многочисленные сведения о случаях острого воздействия на людей внешнего гамма-излучения. Причинами аварийных ситуаций при этом, как правило, являются грубые нарушения правил хранения, эксплуатации, транспортирования источников при дефектоскопии, работе с эталонами и реже манипуляции на стационарных гамма-источниках, в первую очередь при зарядке облучательских установок (неисправность блокировки или сигнализации). Значительное число случаев происходит в связи с недостатками организации работ. Часть из них может быть отнесена к категории ситуаций с «незамеченным источником», подчас становящимся доступным лицам, недостаточно осведомленным о правилах работы с источниками ионизирующих излучений.

Число участников аварийной ситуации может быть различным – от единиц до нескольких десятков человек. При этом наблюдаются все варианты по тяжести поражения – от крайне тяжелых, с общими и местными симптомами заболевания, до слабовыраженных. В случаях с «незамеченным источником» число лиц, подлежащих обследованию по подозрению на облучение, в 5–10 раз больше, чем реально пострадавших.

Из встречающихся на практике видов ионизирующих излучений гамма-излучение является наиболее проникающим. При прохождении моноэнергетического гамма-излучения через среду оно ослабляется по экспоненциальному закону. Его проникающую способность нельзя охарактеризовать пробегом в среде, но можно косвенно представить толщиной слоя половинного ослабления. Последняя в воздухе измеряется метрами, а в биологической ткани - сантиметрами и дециметрами. Наиболее распространенные гамма-излучающие нуклиды могут быть расположены по мере уменьшения проникающей способности излучения в следующий ряд: 60 Co, 137 Cs, 192 Ir.

Для возникающих от источников внешнего гамма-излучения поражений чаще характерно резко неравномерное облучение, при котором на разные части и сегменты тела приходятся существенно различающиеся дозы.

При любом одностороннем воздействии гамма-излучения равномерное облучение практически невозможно из-за существенного перепада дозы по глубине и высоте тела человека. Чем ближе пострадавший находится к источнику, тем эта неравномерность больше. Довольно часто положение и поза работающего приводят к преимущественному облучению отдельных частей тела (вытянутые по направлению к источнику конечности, наклоненная к источнику голова). В такого рода случаях возможно развитие локальной формы поражения. Чаще же всего имеет место сочетание общего облучения в той или иной (иногда небольшой) дозе с дополнительным воздействием на отдельные сегменты тела. Соотношение и уровень доз при общем и местном облучении, размер и объем тканей, подвергающихся повышенному облучению, во многом обусловливают исход радиационного поражения.

Острые воздействия бета-гамма-излучения возможны при нарушении правил ведения работы с гамма-бета-источниками, при нарушении герметичности упаковки с поступлением в окружающую среду гамма-бета-радиоактивных веществ в жидком, аэрозольном или газообразном состоянии. При этом могут возникнуть поражения, обусловленные сочетанным воздействием двух факторов.

Сочетание внешнего бета и гамма-облучений, иногда с отложением радиоактивных веществ на коже и слизистых оболочках дыхательных путей и глаз, имеет место при авариях ядерных установок с нарушением целостности технологических коммуникаций. При этом пострадавшие, в зависимости от конкретных условий (характер аварии, тип установки, объем пространства), могут подвергаться воздействию:

радиоактивных благородных газов;

проникающего излучения от загрязненной местности в случае нарушения герметичности установки или выброса из активной зоны реактора смеси продуктов деления различного возраста;

радиоактивных веществ, апплицированных на коже и слизистых оболочках глаз и дыхательных путей;

радиоактивных веществ, поступающих в организм при ингаляции, заносе и загрязненных кожных покровов или при использовании пищи и воды, содержащих нуклиды.

Сочетания отдельных компонентов воздействия могут быть различными. В каждом случае исход радиационного поражения будет зависеть от уровня и соотношения дозы при общем и местном облучении и, что очень существенно, от размеров поверхности тела, подвергшейся «дополнительному» локальному облучению.

Результат действия совокупности указанных радиационных факторов на людей существенно зависит от того, были ли на них специальные защитные костюмы и находились ли они на открытой местности или в укрытии (в автомашинах, зданиях и различных сооружениях). В зависимости от степени защиты воздействие может ограничиться только общим внешним облучением или сочетанным действием нескольких факторов. Как показывает опыт, число пострадавших может колебаться в широких пределах - от одного человека до множества людей.

Примером сходной по совокупности действующих факторов ситуации является обстановка, создавшаяся в связи с испытанием ядерного оружия на Маршалловых островах, у жителей которых развились радиационные поражения от воздействия бета- и гамма-излучений радиоактивных осадков экспериментального взрыва термоядерной бомбы.

Бета-излучение имеет конечный пробег в веществе, который в воздухе измеряется дециметрами – метрами, а в биологической ткани составляет несколько миллиметров. Внешнее бета-излучение действует главным образом на кожу, а при большой энергии бета-частиц - также на подкожные ткани и хрусталики глаз. Остальные органы не подвергаются воздействию внешних потоков бета-частиц. При тотальном воздействии или большой площади бета-облучения кожи она может становиться критическим органом. Локальные облучения потоками бета-частиц тоже наблюдаются, но относительно реже, чем в сочетании с гамма-излучением.

Опыт аварийных ситуаций с воздействием бета-, гамма-излучения в масштабе как крупных ядерных катастроф, так и случаев разгерметизации источников бета- гамма-излучения различной активности убедительно демонстрирует определяющую роль внешнего бета-, гамма-излучения в сравнении с поступлением радионуклидов в организм. Подтверждением этому служат ситуации при авариях на атомных реакторах в Уиндскейле, и на АЭС Три-Майл-Айленд и ЧАЭС.

Воздействия на человека внешнего гамма-нейтронного излучения имели место при нарушении правил техники безопасности в лабораториях научно-исследовательских учреждений или на действующих ядерно-энергетических установках, при ведении работ по геологическому каротажу, при экспрессном химическом анализе и других работах.

Наибольшую опасность представляют аварии ядерных установок, вызванные развитием самопроизвольных цепных реакций. Это относится, в частности, к «критическим сборкам», у которых, в отличие от стационарных энергетических установок, отсутствует специальная защита. Самопроизвольные цепные реакции могут возникнуть также в емкостях с раствором делящегося вещества (например, урана или плутония), когда масса его превысит критическую.

Мировая практика свидетельствует, что при массивном воздействии гамма-нейтронного излучения облучение тела пострадавших является обычно резко неравномерным. Гамма- и нейтронное излучения являются косвенно ионизирующими. Тканевая доза нейтронов обусловлена поглощенной энергией вторичного излучения, возникающего при их взаимодействии с тканями организма. Характер распределения дозы в тканях и вклад в дозу различных компонентов зависят от энергии нейтронов, геометрических размеров облучаемого объекта и распределения химических элементов в ткани. Неоднородность распределения дозы в объеме тела тем больше, чем выше доля нейтронов деления и меньше расстояние пострадавшего до источника. Относительная биологическая эффективность нейтронов разных энергий по сравнению с гамма-излучением усиливает создающуюся неравномерность распределения дозы по телу. При прохождении через тело человека нейтронное излучение ослабляется меньше, чем бета-излучение, но в большей степени, чем гамма-излучение. Так, при направленном пучке доза нейтронов может ослабляться в торсе человека в десятки раз, а гамма-излучение - в 2-4 раза. В случае экранирования отдельных частей тела различными предметами изменяется не только уровень облучения, но и спектр компонентного состава излучения, поскольку гамма-излучение и нейтроны различных энергий ослабляются существенно различно. Таким образом, соотношение поглощенных доз гамма-излучения и нейтронов зависит не только от спектра энергии компонентов излучения источника, но и от условий облучения (наличие различных предметов, экранов и т.п.), изменяется по глубине облучаемой ткани и может несколько различаться у пострадавших в одной и той же аварии.

При некоторых обстоятельствах (нарушение целостности активной зоны на критических сборках или реакторах, при ядерных взрывах) аварийное облучение может сопровождаться попаданием внутрь организма продуктов деления урана или плутония, т.е. может иметь место сочетанное воздействие различных радиационных факторов.

Число пострадавших в авариях от гамма-нейтронного излучения при СЦР в лабораториях, как правило, невелико (3-10 человек).

При современном техническом уровне организации работ на ускорителях частиц высоких энергий (линейный ускоритель, электростатический генератор Ван-де-Граафа, циклотрон, бетатрон, синхротрон, синхрофазотрон, синхроциклотрон и др.) воздействия потоков частиц (протоны, дейтроны и другие частицы) в повышенной дозе редки, носят чаще локальный характер. Своеобразием их действия является достижение высоких локальных доз в строго определенном ограниченном объеме, соответственно геометрии источник-объект. Однако распределение дозы требует учета всех компонентов, в том числе и относительной доли низкоэнергетических излучений, а также условий воздействия (угол наклона падения потока частиц по отношению к облучаемой поверхности и пр.).

В зону повреждения попадают ткани различной радиочувствительности, поэтому их поражение формируется даже при относительной близости поглощенных доз в различные сроки. Исход во многом зависит от локализации излучения и заключенных в облученном сегменте критических структур.

ВНУТРЕННЕЕ ОБЛУЧЕНИЕ ОТ ПОСТУПЛЕНИЯ РАДИОНУКЛИДОВ В ОРГАНИЗМ

Поступление радионуклидов в организм в количествах, превышающих допустимое годовое поступление (ДГП), возможно лишь при нарушении аргументированных регламентов работы, несоблюдении санитарных правил работы с радиоактивными веществами и норм радиационной безопасности. Облучение в повышенной дозе может касаться различных категорий облучаемых лиц.

В условиях профессионального контакта подобные ситуации описаны при нарушениях правил ведения научно-исследовательских работ в лабораториях, при работе в ремонтных зонах атомных электростанций и ядерно-энергетических установок, при получении ядерного топлива, производстве и использовании различных радионуклидов для технических, исследовательских и медицинских целей, при промышленном использовании соединений радия, полония, трития, стронция и др.

Поступление радиоактивных веществ в организм лиц из населения возможно при нарушении системы очистки воздуха рабочих помещений атомных электростанций и радиохимических предприятий и при аварийных производственных выбросах, загрязнении источников водоснабжения и питания производственными отходами и продуктами экспериментальных ядерных взрывов, разгерметизации похищенных радиоактивных источников, незаконном проникновении людей в места захоронения отходов и т.д. В зависимости от обстоятельств число лиц с подозрением на поступление нуклидов может колебаться от единиц до нескольких сотен.

Закономерности формирования дозовых нагрузок в организме или отдельных органах (распределение и динамика) зависят от многих факторов: путей поступления, дисперсности, форм растворимости и валентности, транспортабельности поступающих соединений вещества. Существенно отличается их распределение по органам (равномерное или органотропное) и микроструктурам. Различны параметры обмена и кинетики (коэффициенты резорбции и отложения, постоянные и периоды полувыведения). Периоды полувыведения для одних нуклидов могут составлять доли секунд, для других – сотни лет, т.е. превосходить продолжительность жизни человека.

Уровень формирующихся доз зависит, кроме того, от типа излучателя и его энергии, приходящейся на один распад, количества поступившего радионуклида и создающейся при этом концентрации вещества на единицу массы в рассматриваемом органе.

Часть ситуаций с попаданием радиоактивных веществ в организм может сопровождаться одновременно воздействием внешнего излучения, т.е. происходит сочетанное радиационное воздействие.

Реальные ситуации показывают, что при сочетании внешнего и внутреннего облучения преобладающим чаще является действие внешнего фактора. Следует, однако, учитывать, что внутреннее облучение может быть длительным, в то время как прямое действие внешних источников излучения на организм прекращается с выводом человека из поля их действия, и это требует большого внимания на всех этапах оказания помощи, носящей профилактический характер.

В реальных условиях влияние радиационных факторов обычно сочетается с воздействием токсических и иных нерадиационных факторов. Внешняя среда в лабораториях, предприятиях сложная, многофакторная. Таким образом, следует попытаться выделить основные ведущие и сопутствующие факторы либо учитывать их сочетанное действие. Закономерным в этих сочетаниях зачастую является преобладающее влияние нерадиационных факторов (ожог, травма, отравление угарным газом при пожаре, поступлении окиси азота, фтора, концентрированных кислот и щелочей).

Требования по ограничен и ю облучения населен и я в услов и ях рад и ац и онной авар и и

В случае возникновения аварии, при которой облучение людей может превысить основные дозовые пределы от техногенного облучения, должны быть приняты практические меры для восстановления контроля над источником и сведения к минимуму доз облучения, количества облученных лиц из населения, радиоактивного загрязнения окружающей среды, экономических и социальных потерь, вызванных радиоактивным загрязнением.

При радиационной аварии или обнаружении радиоактивного загрязнения ограничение последующего облучения осуществляется защитными мероприятиями, применимыми, как правило, к окружающей среде и (или) к человеку. Эти мероприятия связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории, т. е. являются вмешательством, влекущим за собой не только экономический ущерб, но и неблагоприятное воздействие на здоровье населения, психологическое воздействие на население и экологический ущерб. Поэтому при принятии решений о характере вмешательства (защитных мероприятий) следует руководствоваться следующими принципами:

Предлагаемое вмешательство должно принести обществу и, прежде всего облучаемым лицам больше пользы, чем вреда, т. е. уменьшение ущерба в результате снижения дозы должно быть достаточным, чтобы оправдать вред и стоимость вмешательства, включая его социальную стоимость (принцип обоснования вмешательства);

Форма, масштаб и длительность вмешательства должны быть оптимизированы таким образом, чтобы чистая польза от снижения дозы, т. е. польза от снижения радиационного ущерба за вычетом ущерба, связанного с вмешательством, была бы максимальной (принцип оптимизации вмешательства). Однако если предполагаемая доза облучения достигает уровней, при превышении которых возможны клинически определяемые эффекты (табл. 28), срочное вмешательство (меры защиты) безусловно необходимо.

Таблица 28.

ПРОГНОЗИРУЕМЫЕ УРОВНИ ОБЛУЧЕНИЯ, ПРИ КОТОРЫХ БЕЗУСЛОВНО НЕОБХОДИМО СРОЧНОЕ ВМЕШАТЕЛЬСТВО

Уровни вмешательства для временного отселения населения составляют: для начала временного отселения - 30 мЗв в месяц, для окончания временного отселения 10 мЗв в месяц. Если прогнозируется, что накопленная за один месяц доза будет находиться выше указанных уровней в течение года, следует решать вопрос об отселении населения на постоянное место жительства.

При проведении противорадиационных вмешательств дозовые пределы (табл. 3) не применяются. Исходя из указанных принципов, при планировании защитных мероприятий на случай радиационной аварии органами госсанэпиднадзора устанавливаются уровни вмешательства (дозы и мощности доз облучения, уровни радиоактивного загрязнения) применительно к конкретному радиационно-опасному объекту и условиям его размещения с учетом вероятных типов аварии, сценариев развития аварийной ситуации и складывающейся радиационной обстановки.

При аварии, повлекшей за собой радиоактивное загрязнение обширной территории, на основании контроля и прогноза радиационной обстановки устанавливается зона радиационной аварии (ЗРА). ЗРА определяется как территория, на которой суммарное внешнее и внутреннее облучение в единицах эффективной дозы может превышать 5 мЗв за первый после аварии год (средняя по населенному пункту). В зоне радиационной аварии проводится мониторинг радиационной обстановки и осуществляются мероприятия по снижению уровней облучения населения на основе принципа оптимизации.

Принятие решений о мерах защиты населения в случае крупной радиационной аварии с радиоактивным загрязнением территории проводится на основании сравнения прогнозируемой дозы, предотвращаемой защитным мероприятием, с уровнями А и Б, приведенными в табл. 29–31.

Таблица 29.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ НЕОТЛОЖНЫХ РЕШЕНИЙ В НАЧАЛЬНОМ ПЕРИОДЕ АВАРИЙНОЙ СИТУАЦИИ

Меры защиты

Прогнозируемая доза за первые 10 суток, мГр

на все тело

Щитовидная железа, легкие, кожа

Уровень А

Уровень Б

Уровень А

Уровень Б

профилактика взрослые

Эвакуация

*Тольк о для щитовидной железы

Таблица 30.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОТСЕЛЕНИИ И ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПИЩЕВЫХ ПРОДУКТОВ

Таблица 31.

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ ОБ ОГРАНИЧЕНИИ ПОТРЕБЛЕНИЯ ЗАГРЯЗНЕННЫХ ПРОДУКТОВ ПИТАНИЯ В ПЕРВЫЙ ГОД ПОСЛЕ ВОЗНИКНОВЕНИЯ АВАРИИ

Если уровень облучения, предотвращаемого защитным мероприятием, не превосходит предела А, нет необходимости в выполнении мер защиты, связанных с нарушением нормальной жизнедеятельности населения и хозяйственного и социального функционирования территории.

Если предотвращаемое защитным мероприятием облучение превосходит уровень А, но не достигает уровня Б, решение о выполнении мер защиты принимается по принципам обоснования и оптимизации с учетом конкретной обстановки и местных условий.

Если уровень облучения, предотвращаемого защитным мероприятием, достигает и превосходит предел Б, необходимо выполнение соответствующих мер защиты, даже если они связаны с нарушением нормальной жизнедеятельности населения, хозяйственного и социального функционирования территории.

На поздних стадиях радиационной аварии, повлекшей за собой загрязнение обширных территорий долгоживущими радионуклидами, решения о защитных мероприятиях принимаются с учетом сложившейся радиационной обстановки и конкретных социально-экономических условий.

Кри т ерии вмеша т ельства на загрязненных территориях

    Защита населения на территориях, подвергшихся радиоактивному загрязнению, осуществляется путем вмешательства на основе принципов безопасности при вмешательстве. При любых восстановительных действиях вмешательства необходимо обеспечить непревышение уровня пороговых нестохастических эффектов.

    Числовые значения критериев вмешательства для территорий, загрязненных в результате радиационных аварий, и вмешательства при обнаружении локальных радиоактивных загрязнений (“последствий прежней деятельности”) различаются.


Что такое радиационная авария? Радиационная авария это - потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями персонала, стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или радиоактивному загрязнению окружающей среды.




Внешнему облучению от воздействия радиоактивного облака и радиоактивных веществ, осевших на местности; контактному облучению кожных покровов при попадании на них радиоактивных веществ; внутреннему облучению при вдыхании загрязненного воздуха и употреблении загрязненных продуктов питания и воды. Под влиянием ионизирующих излучений в организме человека возникают биологические процессы, приводящие к нарушению жизненных функций различных органов (главным образом, органов кроветворения, нервной системы, желудочно-кишечного тракта и др.). Человек, находящийся на загрязненной территории, подвергается:


Меры предупреждения и защиты при радиационной аварии 1.оповещение населения об аварии и информирование его о порядке действий в создавшихся условиях 2.укрытие 3.использование средств индивидуальной защиты; 4.предотвращение потребления загрязненных продуктов питания и воды 5.эвакуация населения 6.ограничение доступа на загрязненную территорию


Йодная профилактика При авариях на радиационно-опасных объектах в облаке радиоактивных продуктов содержится значительное количество радиоактивного йода-131, который сорбируется щитовидной железой человека и вызывает ее поражение. Наиболее эффективным методом защиты от действия радиоактивного йода-131 является йодная профилактика. С этой целью осуществляется прием внутрь лекарственных препаратов стабильного йода


Примеры радиационных аварий: 1 сентября 1944 года в США, штат Теннеси, в Ок-Рижской национальной лаборатории при попытке прочистить трубу в лабораторном устройстве по обогащению урана произошел взрыв гексафторида урана, что привело к образованию опасного вещества гидрофтористой кислоты. Пять человек, находившихся в это время в лаборатории, пострадали от кислотных ожогов и вдыхания смеси радиоактивных и кислотных паров. Двое из них погибли, а остальные получили серьезные травмы.


В СССР первая серьезная радиационная авария произошла 19 июня 1948 года, на следующий же день после выхода атомного реактора по наработке оружейного плутония (объект «А» комбината «Маяк» в Челябинской области) на проектную мощность. В результате недостаточного охлаждения нескольких урановых блоков произошло их локальное сплавление с окружающим графитом. В течение девяти суток канал расчищался путем ручной рассверловки. В ходе ликвидации аварии облучению подвергся весь мужской персонал реактора, а также солдаты строительных батальонов, привлеченные к ликвидации аварии.




Источники информации: Википедия 6/ htmlhttp:// 6/ html ada.phphttp:// ada.php Яндекс картинки








Территориальные аварии Радиационные последствия аварии ограничиваются пределами субъекта Российской Федерации, на территории которого расположена АЭС, и включают, как правило, две и более административно- территориальные единицы субъекта. При этом возможно облучение персонала и населения нескольких административно- территориальных единиц субъекта Российской Федерации выше уровней, установленных для нормальной эксплуатации.




Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1000 человек, или материальный ущерб от аварии превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной. Федеральные аварии



В самом конце 18 века было открыто радиоактивное излучение, после чего началось активное исследование этого явления. Уже в 1901 году впервые применили облучение в медицинских целях. Спустя 30 лет стали задумываться о разработке ядерного оружия. Первые заводы по производству плутония заработали в 1944 году. Отработанный материал поначалу просто сбрасывали в окружающую среду, как обычный мусор. Прилегающей местности был нанесен значительный урон. Так зародилась статистика радиационных аварий в мире. Началась эра радиоактивного загрязнения окружающей среды человеком.

Мирный «атом»

С середины 20 века начались разработки двигателя, для применения его в транспортной отрасли. По мере развития этого направления пробовали разрабатывать атомолет, атомовоз, атомоход. Самой удачной оказалась идея создать суда на атомном ходу. В гражданской сфере это атомные ледоколы, .

В медицине радиация стала служить во благо почти сразу после открытия. Сегодня радиоактивное излучение эффективно используется в области неврологии, онкологии, кардиологии, а также комплексной диагностики.

Статистика радиационных аварий в мире в сфере народного хозяйства:


Годы

Тип выброса, условное * кол-во

Неорганизованный сброс ядерных отходов Аварии на производстве и другие утечки Гражданские инциденты
1944–1949 2 4
1950–1959 1 15
1960–1969 1 11
1970–1979 1 10
1980–1989 1 28 1
1990–1999 2 31 15
2000–2009 2 10 9

* – в таблице приведены условные количественные значения. Так, к примеру, только на предприятии «Маяк» (Челябинская обл., Россия) за все время работы известно порядка 32 происшествий разной степени тяжести, а в сводную статистику попали лишь 15 из них.

Из таблицы можно заметить, что с 90 годов начали происходить инциденты среди граждан. Участились случаи кражи ядерных материалов, попытки их сбыта (виновники в большинстве случаев вскоре от полученного облучения). В частности, наблюдалось хищение медицинских радиоактивных источников, которые разбирали и продавали в качестве металлолома. Вообще, на предприятия по переплавке металлолома не раз попадал различный «зараженный» радиацией материал.

Ядерные катастрофы


После открытия цепной реакции распада в 1941 году задумались о применении ядерного ресурса для выработки электроэнергии. В 1954 году была завершена первая в мире АЭС (г. Обнинск, СССР). В наше время на планете насчитывается около 200 электростанций. Однако обеспечить безаварийную работу таких объектов удается с трудом.

Для оценки степени опасности данных статистики радиационных аварий в мире в 1990 году была разработана INES (ИНЕС) – международная классификация ядерных событий в гражданской сфере. Согласно этой шкале крупными радиационными авариями в мире считаются происшествия, оцененные выше 4 баллов. За всю историю ядерной энергетики насчитывается около 20 таких случаев.

INES 4. События, приводящие к выбросу в окружающую среду незначительных доз радиации, эквивалентных 10–100 ТБк 131 I. В таких авариях фиксируются единичные смертельные случаи от облучения. В зоне происшествий требуется только контроль продуктов питания. Примеры аварий:

  1. Флерюс, Бельгия (2006).
  2. Токаймура, Япония (1999).
  3. Северск, Россия (1993).
  4. Сен-Лоран, Франция (1980 и 1969).
  5. Богунице, Чехословакия (1977).

INES 5. Происшествия, в результате которых выброс радиации эквивалентен 100–1000 ТБк 131 I и служит причиной нескольких смертей. В таких зонах может потребоваться локальная эвакуация. Примеры:

  1. Гояния, Бразилия (1987). Был найден некий бесхозный объект, который оказался разрушенным высокорадиоактивным источником Цезия-137. Сильные дозы облучения получили 10 человек, 4 из них погибли.
  2. Бухта Чажма, СССР (1985).
  3. Три-Майл-Айленд, США (1979).
  4. Айдахо, США (1961).
  5. Санта-Сюзана, США (1959).
  6. Виндскейл-Пайл, Великобритания (1957).
  7. Чок-Ривер, Канада (1952).

INES 6. Аварии, в которых выброс радиоактивного материала в окружающую среду эквивалентен 1000–10000 ТБк 131 I. Требуется эвакуация населения или укрытие его в убежищах. Пример известен один. Это самая первая радиационная авария в мире подобного масштаба – Кыштымская, СССР (1957).

«Маяк» – предприятие по хранению и переработке ядерного топлива в Челябинской области. В 1957 году произошел взрыв емкости содержащей 70–80 тонн ядерных отходов. Образовалось радиоактивное облако, которое разнесло опасные вещества по территории более 23 тыс. км 2 на головы 272 тыс. человек. Впервые 10 суток от облучения погибло порядка 200 чел.

INES 7. Этот балл присваивается крупнейшим радиационным авариям и катастрофам в мире. Они характеризуются обширным радиационным воздействием на людей и окружающую среду, эквивалентны выбросу в 10 000 ТБк 131 I и более. Несут в себе колоссальные последствия для здоровья человека и состояния природы. Требуется срочное осуществление запланированных и длительных контрмер, разработанных для подобных случаев. Этот рейтинг присвоен двум самым крупным радиационным авариям в мире:

  1. Фукусима (2011) . Череда трагических событий обрушилась на Японию в тот год. Не устояла перед ними и АЭС Фукусима-1. и последующее за ним оставили 3 реактора без электроснабжения, а значит и без системы охлаждения. Взрыв был неизбежен. Заражены радиацией, оказались обширные территории, больше всего в аварии пострадали воды океана. Зоной отчуждения стала 30-километровая территория вокруг АЭС. За первый год от лучевой болезни скончались приблизительно 1 тыс. чел.
  2. Чернобыль (1986) . Катастрофа на Чернобыльской АЭС произошла 26 апреля. В четвертом энергоблоке, где находилось порядка 190 тонн ядерного топлива, прогремел взрыв. Начавшаяся из-за ошибочных действий персонала авария приобрела неадекватные масштабы вследствие (как позже выяснилось) нарушений, допущенных при строительстве реактора.

В результате около 50 тыс. км 2 сельскохозяйственных земель стали непригодны для возделывания. В 30-километровую зону отчуждения попал город Припять, население которого на тот момент составляло 50 тыс. чел. А также другие населенные пункты.

Статистика радиационных аварий показывает, что в последующие двадцать лет от облучения погибло около 4 тыс. чел.

Военный «атом»

О разработке ядерного оружия стали задумываться еще с 1938 года. В 1945 г. США впервые в мире испытали ядерную бомбу на своей территории, и следом еще две сбросили на города Японии: Хиросиму и Нагасаки. Было убито более 210 тыс. человек, .

Согласно данным Википедии город Хиросима был полностью восстановлен в 1960 году. За период с 1945 по 2009 год известно о 62 испытаниях ядерного оружия и 33 авариях военной техники, использующей ядерные силовые установки в качестве двигателя или с ядерным оружием на борту.

Годы

Тип выброса, кол-во шт .

Испытание оружия Аварии

военной техники

1945–1949 2
1950–1959 13 1
1960–1969 28 9
1970–1979 12 3
1980–1989 7 7
1990–1999 2
2000–2009 11

С 90 годов тестирование оружия прекратилось. Так как в 1996 году большинство стран подписало договор о запрете ядерных испытаний.

Статистика радиационных аварий в мире: мнение экспертов

Существуют два мнения о вреде радиации. Одни ученые проводят скрупулезные расчеты, и утверждают, что на долю техногенных радиационных аварий в мире и испытаний ядерного оружия приходится всего 1% от общего радиационного фона. Что ядерная промышленность – это неисчерпаемый ресурс, за которым будущее.

По мнению других статистика радиационных аварий в мире показывает, что в экономическом плане от ядерной энергии нет никаких плюсов. Поэтому эксперты призывают отказаться от ядерной промышленности, оставить ее в прошлом. Технологии имеют высокую стоимость на стадии разработки и строительства, а ущерб в случае аварии перекрывает собой всю возможную выгоду. Не говоря уже о человеческих жертвах и негативном воздействии радиации на здоровье многих поколений вперед.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация