Чтобы протекал процесс горения необходимы следующие условия. Условия возникновения горения

Главная / Квартира

Для возникновения горения необходимо наличие в одном месте и в одно время трех компонентов: горючего вещества, окислителя и источника зажигания (рис 414). Кроме того, нужно, чтобы горючее вещество было наг. Грета до необходимой температуры и находилась в соответствующем количественном соотношении с окислителем, а источник зажигания мало необходимую энергию для начального импульса (зажигания). Так, спичкой можно зажечь лист бумаги, а деревянную колоду - невозможно. Необходимость для горения одновременно трех компонентов, так называемый треугольник огня, обнаружил еще в XVIII в французский ученый. Лавуазьвуазьє.

Рис 414. Условия, необходимые для возникновения горения

После возникновения горения протекает тем интенсивнее, чем больше удельная площадь контакта горючего вещества с окислителем (бумажные обрезки горят интенсивнее, чем пачки бумаги) и чем выше концентрация я окислителя, температура и давление. На пожарах температура достигает 1000-1300 °. С, а в отдельных случаях, например, при горении магниевых сплавов - 3000 °С.

Горючими веществами считаются вещества, которые при воздействии на них высоких температур, открытого пламени или другого источника зажигания могут заниматься и в дальнейшем гореть с образование м тепла и, зазвич чай, излучением света. В горючих веществ относятся: дерево, бумага, ткани, большинство пластмасс, природный газ, бензин, керосин и другие вещества в твердом, жидком, газообразном состоянии. Как правило, наиболее опасными в пожарном отношении являются горючие вещества в газообразном состояниині.

В состав подавляющего большинства горючих веществ входят углерод (Карбон) и водород (водород), которые являются основными горючими составляющими этих веществ. Поэтому и основными продуктами полного горения (при достаточно й количества кислорода) горючих веществ является. С02 и. Н20. Есть также целый ряд горючих веществ, которые представляют собой простые элементы, например, сера (Сера), фосфор (Фосфор), углерод (Карбонн).

Горючие вещества имеют разную теплотворную способность, поэтому температура на пожарах зависит не только от количества вещества, горит, но и от ее качества (химического состава). В табл 44 приведены температуру в пламя при горении некоторых веществ и материалелів.

Таблица 44. Температура пламени при горении некоторых веществ и материалов

окислителя при горении веществ чаще всего выступает кислород воздуха -. О, однако с уменьшением содержания кислорода в воздухе замедляется скорость горения, а при содержании кислорода менее 14% (норма 21%) горение большинства веществ становится невозможным. Кроме кислорода, окислителями могут быть химические соединения, в состав которых входит кислород, например, селитра (KNO3), азотная кислота (HNO3), марганцовокислый калий (КМn2O4) а также отдельные химические элементы (фтор, хлор, бром). Некоторые вещества содержат в своем составе кислорода столько, что его достаточно для горения без доступа воздуха (пыль, взрывчаткавка).

Источником зажигания, т.е. инициатором пожара может быть: открытое пламя, раскаленные предметы, электрические заряды, тепловые процессы химического, электрического и механического происхождения, искры от ударов т и трения, солнечная радиация, электромагнитные и другие излучения. Источники зажигания могут быть высоко-, средне-и маломощными (табл. 45)5):

таблице 45. Мощности некоторых источников зажигания

433 Разновидности горения

Различают следующие разновидности горения: взрыв, детонация, вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, тления

Взрыв - чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных выполнять механическую работу основном эта механическая работа сводится к разрушения нувань, возникающих при взрыве и обусловлены образованием ударной волны - внезапного скачкоподибного рост давления. При удалении от места взрыва механическое воздействие ударной волны ослабляетсяся.

Детонация - это горение, которое распространяется со скоростью несколько тысяч метров в секунду. Возникновение детонации объясняется сжатием, нагревом и перемещением несгоревшей смеси перед фронтом пламени в приводит к ускорению распространения пламени и возникновения в смеси ударной волны. Таким образом, наличие достаточно мощной ударной волны является необходимой предпосылкой для детонации, поскольку в этом случае передача теплоты в смеси осуществляется не путем медленного процесса теплопроводности, а распространением ударной минлі.

Вспышка - кратковременное интенсивное сгорания ограниченного объема газовоздушной смеси над поверхностью горючего вещества или пылевоздушной смеси сопровождается кратковременным видимым излучением, ал ле без ударной волны и устойчивое горение.

Возгорание - начало горения под воздействием источника зажигания

воспламенения - возгорание, сопровождающееся появлением пламени

Тление - беспламенное горения материала (вещества) в твердой фазе с видимым излучением света из зоны горения

Самовозгорание - начало горения вследствие самоиницийованих экзотермических процессов

самовоспламенения - самовозгорание, сопровождающееся появлением пламени

Самовозгорание возникает тогда, когда в результате экзотермических процессов скорость выделения тепла в массе горючего вещества превышает скорость его рассеивания в окружающую среду. Инициировать экзотермических процессы, а затем вызвать самовозгорание могут:

высокая температура горючего вещества, обусловлена??действием внешнего источника нагрева (тепловое самовозгорание);

Жизнедеятельность микроорганизмов в массе горючего вещества, что приводит к ее самонагревания (микробиологическое самовозгорание);

Химические реакции, в результате воздействия на вещество воздуха, воды или химически активных веществ (химическое самовозгорание)

Тепловое самовозгорание возникает в массе материалов, находящихся в энергетически благоприятном исходном состоянии для вступления в реакцию обмена с кислородом воздуха, при нагревании извне. Такой нагрев может осуществляться следующими путями:

Контактным (вследствие теплообмена при контакте с нагретым предметом);

Радиационным (вследствие лучистого тепла);

Конвективным (вследствие передачи тепла воздушным потоком)

"Механизм"теплового самовоспламенения заключается в следующем. Во время внешнего нагрева материала. Его температура постепенно повышается (фаза а, рис 415). После достижения температуры самонагревания. ТСН в материале происходит резкая интенсификация экзотермических процессов окисления и разложения, что приводит к самонагревания и повышения температуры материала (фаза б). Наиболее интенсивное самонагриван ния возникает в месте, где достигаются наилучшие условия аккумуляции тепла. Таким условиям отвечают глубинные места, поскольку именно в них наихудшие условия рассеивания тепла в окружающую среду. Так, ячейка самонагревания каменного угля, составленного в кучу, находится обычно на глубине 0,5-0,8 м от поверхн,8 м від поверхні.

При достижении температуры самовоспламенения. ТСЗ возникает горения материала без источника зажигания (фаза в)

Рис 415. Типичный график зависимости температуры горючего материала от времени при тепловое самовозгорание

Тепловое самовоспламенение наблюдается при хранении в кучах каменного угля (Та = 50-60 °. С) и хлопка (Та = 120-125 °. С), а также в кипах газетного (обойной) бумаги и гофрированного картона (Т. Три = 100-110 °. С.

Профилактика теплового самовоспламенения - предотвращение нагрева материалов (веществ) от внешних источников тепла

К микробиологического самовозгорания способны органические дисперсные и волокнистые материалы, внутри которых возможна жизнедеятельность, так называемых термофильных микроорганизмов. Именно жизнедеятельность таких микроор рганизмив приводит к первичному самонагревания массы материала. Особенно подвержены микробиологического самовозгорания невысушенные вещества растительного происхождения, сложенные в кучу (сено, солома, зерно, ле н, хлопок, торф и др.). Микробиологическое самовозгорание возникает в период от 10 до 30 суток с момента начала процессесу.

На рис 416 приведена типичная кривая развития процесса микробиологического самовозгорания невысушенной сена, заложенного на хранение

Рис 416. Типичная кривая развития процесса микробиологического самовозгорания невысушенной сена, заложенного на хранение

Химическое самовозгорание возникает в результате действия на горючее вещество воздуха, воды или химически активных веществ

К веществам, способные самовозгораться результате воздействия на них кислорода воздуха, относятся масла, жиры и олифы. Однако для этого необходимы соответствующие условия. Так, при хранении этих веществ в таре самовозгорания не в происходит, поскольку поверхность их соприкосновения с воздухом слишком мала. В то же время пропитанные ими волокнистые материалы имеют развитую поверхность окисления, что существенно увеличивает их способность к самовозгоранию. Пр оте еще одним непременным условием является составление пропитанных материалов в кучу, штабеля, пакеты. В этом случае поверхность окисления значительно превышает поверхность теплоотдачи, что приводит к самонагревания реч овин с последующим их самовозгораниеанням.

По опытным данным, 50 г ваты, пропитанной 100 г льняного масла, показали такой рост температуры (табл. 46)

таблице 46. Рост температуры образца после его утечки

Через 15 ч от момента утечки образца его температура достигнет 170 °. С и он вспыхнет без источника зажигания

К веществам, которые способны самовозгораться при действии на них воды, относятся калий, натрий, цезий, карбиды кальция и щелочных металлов и т.п.. Эти вещества при взаимодействии с водой выделяют горючие газы, которые нагревают иваються за счет теплоты реакции и. Самовозгораютсяя.

К химически активных веществ, которые могут вызвать самовозгорание, принадлежат главным образом окислители: сжатый кислород, азотная кислота, перманганат калия, перекись натрия, селитры, хлорная известь и др.

Например, сжатый кислород приводит к самовозгоранию минеральных масел, которые не занимаются на воздухе. А растительные материалы (солома, сено, лен, хлопок, опилки), скипидар, этиловый спирт самозаймають ься в результате контакта с азотной кислотойю.

Способность самовозгораться веществ и материалов необходимо учесть при разработке мер пожарной профилактики во время их хранения, транспортировки, термообработки, выполнения технологических опера этой тощ.

Для возникновения горения необходимо наличие в одном месте и в одно время трех компонентов: горючего вещества, окислителя и источника зажигания (рис. 4.14). Кроме того, нужно, чтобы горючее вещество была нагрета до необходимой температуры и находилась в соответствующем количественном соотношении с окислителем, а источник зажигания мало необходимую энергию для начального импульса (зажигания). Так, спичкой можно зажечь лист бумаги, а деревянную колоду - невозможно. Необходимость для горения одновременно трех компонентов, так называемый треугольник огня, обнаружил еще в XVIII в. французский ученый Лавуазье.

Рис. 4.14.

После возникновения горения протекает тем интенсивнее, чем больше удельная площадь контакта горючего вещества с окислителем (бумажные обрезки горят интенсивнее, чем пачки бумаги) и чем выше концентрация окислителя, температура и давление. На пожарах температура достигает 1000-1300 ° С, а в отдельных случаях, например, при горении магниевых сплавов - 3000 ° С.

Горючими веществами считаются вещества, которые в случае воздействия на них высоких температур, открытого пламени или другого источника зажигания могут заниматься и в дальнейшем гореть с образованием тепла и, как правило, излучением света. К горючих веществ относятся: дерево, бумага, ткани, большинство пластмасс, природный газ, бензин, керосин и другие вещества в твердом, жидком, газообразном состоянии. Как правило, наиболее опасными в пожарном отношении являются горючие вещества в газообразном состоянии.

В состав подавляющего большинства горючих веществ входят углерод (Карбон) и водород (водород), которые являются основными горючими составляющими этих веществ. Поэтому и основными продуктами полного горения (при достаточном количестве кислорода) горючих веществ является С02 и Н20. Есть также целый ряд горючих веществ, которые представляют собой простые элементы, например, сера (Сера), фосфор (Фосфор), углерод (Карбон).

Горючие вещества имеют разную теплотворную способность, поэтому температура на пожарах зависит не только от количества вещества, горит, но и от ее качества (химического состава). В табл. 4.4 приведены температуру пламени при горении некоторых веществ и материалов.

Таблица 4.4.

Окислителем при горении веществ чаще всего выступает кислород воздуха - О.,. Однако с уменьшением содержания кислорода в воздухе замедляется скорость горения, а при содержании кислорода менее 14% (норма 21%) горения большинства веществ становится невозможным. Кроме кислорода, окислителями могут быть химические соединения, в состав которых входит кислород, например, селитра (KNO3), азотная кислота (HNO3), марганцовокислый калий (КМn2O4), а также отдельные химические элементы (фтор, хлор, бром). Некоторые вещества содержат в своем составе кислорода столько, что его достаточно для горения без доступа воздуха (порох, взрывчатка).

Источником зажигания, то есть инициатором пожара может быть: открытый огонь, раскаленные предметы, электрические заряды, тепловые процессы химического, электрического и механического происхождения, искры от ударов и трения, солнечная радиация, электромагнитные и другие излучения. Источники зажигания могут быть высоко-, средне- и маломощными (табл. 4.5):

Таблица 4.5.

Разновидности горения

Различают следующие разновидности горения: взрыв, детонация, вспышка, возгорание, воспламенение, самовозгорание, самовоспламенение, тления.

Взрыв - чрезвычайно быстрое химическое превращение, сопровождающееся выделением энергии и образованием сжатых газов, способных выполнять механическую работу. Преимущественно эта механическая работа сводится к разрушениям, которые возникают во время взрыва и обусловлены образованием ударной волны - внезапного скачкообразно рост давления. При удалении от места взрыва механическое воздействие ударной волны ослабляется.

Детонация - это горение, которое распространяется со скоростью несколько тысяч метров в секунду. Возникновение детонации объясняется сжатием, нагревом и перемещением несгоревшей смеси перед фронтом пламени, что приводит к ускорению распространения пламени и возникновения в смеси ударной волны. Таким образом, наличие достаточно мощной ударной волны является необходимым условием для детонации, поскольку в этом случае передача теплоты в смеси осуществляется не путем медленного процесса теплопроводности, а распространением ударной волны.

Вспышка - кратковременное интенсивное сгорания ограниченного объема газовоздушной смеси над поверхностью горючего вещества или пылевоздушной смеси, сопровождается кратковременным видимым излучением, но без ударной волны и устойчивого горения.

Возгорания - начало горения под воздействием источника зажигания.

Воспламенения - возгорание, сопровождающееся появлением пламени.

Тления - беспламенное горения материала (вещества) в твердой фазе с видимым излучением света из зоны горения.

Самовозгорание - начало горения вследствие самоиницийованих экзотермических процессов.

Самовоспламенение - самовозгорание, сопровождающееся появлением пламени.

Самовозгорание возникает тогда, когда в результате экзотермических процессов скорость выделения тепла в массе горючего вещества превышает скорость его рассеивания в окружающую среду. Инициировать экзотермические процессы, а затем вызвать самовозгорание могут:

высокая температура горючего вещества, обусловленная действием внешнего источника нагрева (тепловое самовозгорание)

Жизнедеятельность микроорганизмов в массе горючего вещества, что приводит к ее самонагревания (микробиологическое самовозгорание)

Химические реакции, в результате воздействия на вещество воздуха, воды или химически активных веществ (химическое самовозгорание).

Тепловое самовозгорание возникает в массе материалов, находящихся в энергетически благоприятном исходном состоянии для вступления в реакцию обмена с кислородом воздуха, при нагревании извне. Такой нагрев может осуществляться следующими способами:

Контактным (вследствие теплообмена при контакте с нагретым предметом)

Радиационным (вследствие лучистого тепла);

Конвективным (вследствие передачи тепла воздушным потоком).

"Механизм" теплового самовоспламенения заключается в следующем. Во время внешнего нагрева материала Его температура постепенно повышается (фаза а, рис. 4.15). После достижения температуры самонагревания ТСН в материале происходит резкая интенсификация экзотермических процессов окисления и разложения, что приводит к самонагревания и повышение температуры материала (фаза б). Наиболее интенсивное самонагревания возникает в месте, где достигаются наилучшие условия аккумуляции тепла. Таким условиям отвечают глубинные места, поскольку именно в них худшие условия рассеивания тепла в окружающую среду. Так, центр самонагревания угля, составленного в кучу, находится, как правило, на глубине 0,5-0,8 м от поверхности.

При достижении температуры самовоспламенения ТСЗ возникает горения материала без источника зажигания (фаза в).

Рис. 4.15.

Тепловое самовозгорание наблюдается при хранении в кучах каменного угля (Та = 50-60 ° С) и хлопка (Та = 120-125 ° С), а также в кипах газетного (обойного) бумаги и гофрированного картона (Три = 100- 110 ° С).

Профилактика теплового самовоспламенения - предотвращение нагрева материалов (веществ) от внешних источников тепла.

К микробиологического самовозгорания способны органические дисперсные и волокнистые материалы, внутри которых возможна жизнедеятельность, так называемых термофильных микроорганизмов. Именно жизнедеятельность таких микроорганизмов приводит к первичному самонагревания массы материала. Особенно подвержены микробиологического самовозгорания невысушенные вещества растительного происхождения, сложенные в кучу (сено, солома, зерно, лен, хлопок, торф и т.д.). Микробиологическое самовозгорание возникает в период от 10 до 30 суток с момента начала процесса.

На рис. 4.16 приведены типичную кривую развития процесса микробиологического самовозгорания невысушенного сена, заложенного на хранение.

Рис. 4.16. Типичная кривая развития процесса микробиологического самовозгорания невысушенного сена, заложенного на хранение

Химическое самовозгорание возникает вследствие воздействия на горючее вещество воздуха, воды или химически активных веществ.

К веществам, способные самовозгораться вследствие воздействия на них кислорода воздуха, относятся масла, жиры и олифы. Однако для этого необходимы соответствующие условия. Так, при хранении этих веществ в таре самовозгорания не происходит, так как поверхность их соприкосновения с воздухом слишком мала. В то же время пропитанные ими волокнистые материалы имеют развитую поверхность окисления, что существенно увеличивает их способность к самовозгоранию. Однако еще одним непременным условием является составление пропитанных материалов в кучу, штабеля, пакеты. В этом случае поверхность окисления значительно превышает поверхность теплоотдачи, что приводит к самонагревания веществ с последующим их самовозгоранию.

По опытным данным, 50 г ваты, пропитанной 100 г льняного масла, показали такой рост температуры (табл. 4.6).

Таблица 4.6.

Через 15 ч с момента утечки образца его температура достигнет 170 ° С и он вспыхнет без источника зажигания.

К веществам, способные самовозгораться при воздействии на них воды, относятся калий, натрий, цезий, карбиды кальция и щелочных металлов и тому подобное. Эти вещества при взаимодействии с водой выделяют горючие газы, которые нагреваются за счет теплоты реакции и самовозгораются.

К химически активных веществ, которые могут вызвать самовозгорание, принадлежат главным образом окислители: сжатый кислород, азотная кислота, перманганат калия, перекись натрия, селитры, хлорная известь и др.

Например, сжатый кислород приводит к самовозгоранию минеральных масел, которые не занимаются на воздухе. А растительные материалы (солома, сено, лен, хлопок, опилки), скипидар, этиловый спирт самовозгораются в результате контакта с азотной кислотой.

Способность самовозгораться веществ и материалов необходимо учесть при разработке мер пожарной профилактики во время их хранения, транспортировки, термообработки, выполнения технологических операций и тому подобное.

Для осуществления горения необходимо выполнение определенных условий, без которых горение невозможно. Первое условие состоит в том, что все процессы горения протекают исключительно в парогазовой фазе. Вторым условием осуществления горения является наличие трех компонент:

  • горючего газа или пара в определенной концентрации с определенной областью воспламенения;
  • окислителя, способного в определенных условиях вступать в химическую реакцию с реагирующим горючим газом;
  • источника воспламенения с достаточной энергией для поджигания и осуществления химической реакции воспламенения горючей смеси.

Характерной особенностью процессов горения является их большая скорость; она обусловлена протеканием реакций в пламени при высокой температуре и сильной зависимостью от температуры скоростей большинства химических процессов. В ряде случаев, когда реагирующая среда неоднородна, результирующая скорость превращения зависит в первую очередь от скорости доставки компонентов в зону реакции, а скорость собственно химического процесса становится несущественной. В такой ситуации решающее значение имеет физическое состояние реагирующих компонентов. В неоднородной среде, например на границе раздела фаз, горение протекает обычно гораздо медленнее, чем в однородной смеси.

Наиболее важным видом горения является горение газов. Большинство твердых и жидких продуктов, участвующих в горении, перед вступлением в основную реакцию либо испаряется, либо разлагается с частичным превращением в газо- образные продукты (газифицируется), которые затем реагируют в газовой фазе. Это происходит в результате прогрева соответствующего компонента (обычно горючего), обусловленного теплопередачей из зоны пламени. Лишь нелетучие горючие, например кокс, твердые продукты пиролиза каменного угля, некоторые металлы, сгорают собственно гетерогенно, на границе раздела фаз. Поэтому закономерности горения газов представляют наибольший интерес.

В повседневной практике принято связывать процесс горения с окислением кислородом различных горючих – угля, газообразных углеводородов, нефтепродуктов и др.

В горючих системах различают горючее и окислитель. В современной технике часто встречаются системы, в которых окислителем служат оксиды азота, галоиды, озон. В ряде случаев в горении участвует только один исходный продукт – эндотермическое соединение, способное к быстрому распаду, полимеризации или самоокислению (взрывчатые вещества и пороха) со значительным тепловыделением. Все же горючие системы, в которых окислителем служит кислород воздуха, наиболее распространены.

Для того чтобы могли протекать реакции горения, необходимо создать условия для воспламенения смеси топлива и окислителя.

Воспламенение может быть самопроизвольным и вынужденным. Под самовоспламенением понимается такое прогрессирующее самоускорение химической реакции, в результате которого медленно протекающий в начальной стадии процесс достигает больших скоростей и на завершающей стадии протекает мгновенно.

Вынужденное воспламенение (зажигание ) обусловлено внесением в реагирующую смесь источника теплоты, температура которого выше ее температуры воспламенения. Газо-воздушная смесь, не воспламеняющаяся при низкой температуре, может воспламениться при повышенной температуре, когда создаются благоприятные условия для возникновения активных центров в результате потери устойчивости сложных исходных молекул веществ.

Процесс воспламенения характеризуется тем, что имеются определенные границы (пределы), вне которых воспламенение не наступает ни при каких условиях. Известно, что газо-воздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в определенных (для каждого газа) пределах. При незначительном содержании газа количество теплоты, выделившейся при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения, т.е. для распространения пламени. То же наблюдается и при слишком большом содержании газа в газо-воздушной смеси. Недостаток кислорода воздуха, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости. Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, верхний – 14,0%. Смесь метана с кислородом имеет нижний предел 5,1%, а верхний – 61%. Поэтому кроме перемешивания газа с воздухом в определенных пропорциях должны быть созданы начальные условия для воспламенения смеси.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газо-воздушной смеси, давления, способа нагрева смеси и т.д., и поэтому не является однозначным параметром. Температура воспламенения метана в воздухе составляет от 545 до 850°С.

В практике используются оба способа воспламенения горючих смесей: самовоспламенение и зажигание. При самовоспламенении весь объем горючей газо-воздушной смеси постепенно путем подвода теплоты или повышения давления доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздействия. В технике широко применяется второй способ, именуемый зажиганием. При этом способе не требуется нагревать всю газо-воздушную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпературным источником (искра, накаленное тело, дежурное пламя и т.д.). В результате воспламенение передается па весь объем смеси самопроизвольно путем распространения пламени, происходящего не мгновенно, а с определенной пространственной скоростью. Эта скорость называется скоростью распространения пламени в газо-воздушной смеси и является важнейшей характеристикой, определяющей условия протекания и стабилизации горения.

Пределы воспламенения газо-воздушных смесей расширяются с повышением температуры, влияние же давления носит более сложный характер. Повышение давления выше атмосферного для некоторых смесей (например, водорода с воздухом) сужает пределы воспламенения, а для других (смесь метана с воздухом) – расширяет. При давлении ниже атмосферного верхний и нижний пределы сближаются, т.е. концентрационные пределы воспламенения сужаются.

Условиями осуществления вынужденного воспламенения являются наличие эффективного источника зажигания и способность образовавшегося фронта пламени самопроизвольно перемещаться (распространяться) в объеме газовоздушной смеси. Этот процесс носит название распространения пламени.

Различают два режима стационарного распространения пламени: в покоящейся или ламинарно движущейся среде и в турбулентном потоке. Первый носит название нормального распространения пламени, а второй – турбулентного.

Рассмотрим явления, происходящие в холодной горючей среде при ее локальном поджигании, которое заключается в быстром разогреве малого объема горючей среды до весьма высокой температуры. Полагаем, что она достаточна для того, чтобы в разогретой области практически мгновенно закончились возможные химические реакции и установилось состояние равновесия, поскольку скорость реакции сильно зависит от температуры. К такому локальному нагреванию обычно приводит газовый разряд либо пережигание тонкой короткой металлической нити током короткого замыкания.

Если реакция в разогретом газе экзотермическая, как это всегда имеет место при горении, то происходит разогрев соседнего слоя газа, обусловленный теплопроводностью. В этом слое в свою очередь произойдут химическое превращение и сопровождающее его выделение тепла Так возникает процесс послойной передачи импульса, инициирующего реакцию и выделение тепла по всему объему, заполненному горючей средой. Зона интенсивной реакции, или зона горения, перемещается в пространстве – происходит распространение пламени.

Реакция в пламени – самоускоряющаяся, обычно до практически полного ее завершения: тепловыделение и химический процесс взаимно ускоряют друг друга. Скорость перемещения пламени определяет интенсивность процесса горения и является его важнейшей характеристикой. Распространение пламени по однородной горючей среде, при котором зона самоускоряющейся реакции движется вследствие послойного разогрева по механизму теплопроводности от продуктов превращения, называют нормальным горением или дефлаграцией. Изложенные качественные представления о механизме горения были развиты одним из основоположников теории горения В. А. Михельсоном.

Зону изменения температуры и состава от начальных, соответствующих холодной горючей среде, до конечных, которые имеют продукты реакции, называют фронтом пламени. Опыт показывает, что эти величины изменяются во фронте пламени очень резко; ширина фронта пламени, границы которого, естественно, строго не фиксированы, при нормальном атмосферном давлении обычно не превышает десятых долей миллиметра. Поэтому во многих случаях можно рассматривать фронт пламени как поверхность, разделяющую холодную горючую среду и нагретые продукты сгорания. Такой прием облегчает установление ряда общих закономерностей, не связанных со спецификой реакций в пламени. При этом скорость реакции и скорость тепловыделения мы будем рассматривать не как объемные, а как поверхностные характеристики и будем относить их к единице поверхности фронта пламени.

Горением – называют физико-химический процесс, для которого характерны три признака: химическое превращение, выделение тепла, излучение света

Основа горения – окислительно-восстановительная реакция горючего вещества с окислителем. Окислителями могут быть хлор, бром, сера, кислород, кислородосодержащие и другие вещества.

Однако чаще всего приходится иметь дело с горением в атмосфере воздуха, при этом окислителем является кислород воздушной среды.

Для возникновения горения необходимо наличие:

горючего вещества;

окислителя;

источника воспламенения.

Но и в этом случае горение будет возможным, если горючее вещество и кислород или другой окислитель находятся в определенном количественном соотношении, а тепловой импульс имеет запас тепла, достаточный для нагревания веществ до температуры его воспламенения.

Если мало горючего вещества в смеси с воздухом или мало кислорода (менее 14-16% ), процесс горения не начинается.

Горение может быть вызвано непосредственным воздействием на горючее вещество открытого пламени или накаленного тепла, слабым, но беспрерывным и продолжительным нагреванием горючего вещества, самовозгоранием, химической энергией, механической энергией (трение, удар, давление), лучистой энергией тепла, нагретым до высоких температур воздухом и т.д.

Следовательно, следует различать условия, необходимые для возникновения горения и условия необходимые для протекания процесса горения.

Условия протекания горения:

1. Количество кислорода в составе воздуха, поступающего в зону горения, будет не менее 14–16% , т.е. вещество и окислитель находятся в определенном количественном соотношении.

Температура зоны горения, которая является постоянным источником воспламенения и источником нагрева верхнего слоя горючего вещества, выше температуры его воспламенения.

3. Скорость диффузии горючих газов и паров (продуктов разложения вещества) в зону горения будет несколько выше скорости горения.

4. Количества излучаемого зоной горения тепла при горении вещества будет достаточно для нагрева поверхностного слоя до температуры его воспламенения.

Если одно из этих условий отсутствует, то процесса горения не будет.

Пожарной опасностью называется возможность возникновения или развития пожара, заключенная в каком-либо веществе, состоянии или процессе.

Из этого определения можно сделать вывод, что пожарную опасность представляют вещества и материалы, если они в силу своих свойств, благоприятствуют возникновению или развитию пожара. Такие вещества и материалы относятся к пожароопасным.

Классификация пожароопасных веществ

Пожароопасные вещества по способности к горению подразделяются на:

Трудногорючие;

Негорючие.

Горючими называются вещества, способные самостоятельно гореть после удаления источника зажигания. Горючие вещества в свою очередь разделяются на легковоспламеняющиеся и трудно воспламеняющиеся.

Легковоспламеняющимся веществом называется горючее вещество, способное воспламеняться от кратковременного воздействия пламени спички, искры и тому подобных источников зажигания с низкой энергией.

К ним относятся:

Горючие жидкости (ГЖ):

Анилин ГЖ;

этиленгликоль ГЖ;

моторные и трансформаторные масла ГЖ;

ацетон ЛВЖ;

бензин ЛВЖ;

бензол ЛВЖ;

диэтиловый эфир и др.

ГЖ – жидкость способная самостоятельно гореть после удаления источника зажигания и имеющая температуру вспышки выше 66 0 С .

ЛВЖ – ГЖ, имеющая температуру вспышки не выше 66 0 С.

Горючие газы (ГГ):

пропан и др.

ГГ – газ способный образовывать с воздухом воспламеняемые и взрывоопасные смеси при температурах не выше 55 0 С .

Горючие вещества:

целлулоид;

полистирол;

нафталин;

древесная стружка;

бумага и т.д.

Трудно воспламеняющимися веществами называются горючие вещества, способные воспламеняться только под воздействием мощного источника зажигания.

К ним относятся:

гетинакс;

полихлорвиниловая плитка;

древесина.

Трудно горючими – называют вещества, способные гореть под воздействием источника зажигания, но не способные к самостоятельному горению после удаления его.

К ним относятся:

трихлорацетат натрия (Nа(СН 3 СОО)Сl 3 );

водные растворы спирта;

аммиачная вода и т.д.

Негорючими называют вещества, не способные к горению в атмосфере воздуха обычного состава. К ним относятся: кирпич, бетон, мрамор, и гипс. Среди негорючих веществ имеются много весьма пожароопасных, которые выделяют горючие продукты или тепло при взаимодействии с водой или друг с другом.

К ним относятся:

Карбид кальция (СаС 2 );

Негашеная известь (СаСО 3 );

Разбавленные кислоты с металлами (серная, соляная);

Окислители КМпО 4 , Са 2 О 2 , О 2 , Н 2 О 2 , НО 3 , сжатый и жидкий кислород.

ГЛАВА 21. ГОРЕНИЕ И ВЗРЫВОПОЖАРООПАСНЫЕ СВОЙСТВА ВЕЩЕСТВ

Условия, необходимые для горения. Классификация видов горения

Мероприятия, при которых исключается возможность пожара и взрыва, в случае их возникновения предотвращается воздействие на людей опасных и вредных факторов пожара и взрыва и обеспечивается защита материальных ценностей, называют пожарной безопасностью.

Пожары и взрывы причиняют значительный материальный ущерб народному хозяйству и в ряде случаев вызывают тяжелые травмы, а иногда и гибель людей.

В Советском Союзе существует система государственных мер борьбы с огнем, которая осуществляется на стадии проектирования, строительства и эксплуатации зданий и сооружений.

В обычных условиях горение представляет собой процесс окисления (ли соединения горючего вещества и кислорода воздуха. Однако известно, что некоторые вещества, например сжатый ацетилен, хлористый азот, взрывчатые вещества, могут гореть, взрываться без кислорода с образованием тепла и пламени. Следовательно, горение может явиться результатом не только реакции соединения, но и разложения.

Горением называют быстро протекающую химическую реакцию, сопровождающуюся выделением большого количества тепла и обычно свечением. В зависимости от скорости процесса процесса горение может происходить в форме собственно гонения, взрыва и детонации.

Наибольшая скорость горения наблюдается в чистом кислороде,
наименьшая - при содержании в воздухе 14-15%(об.) кислорода,
При дальнейшем уменьшении содержания кислорода горение большей
части веществ прекращается. Оно происходит тем быстрее, чем больше
удельная поверхность веществ; при тщательном смешении горючего
вещества и кислорода (окислителя) увеличивается скорость горения.

Для возникновения и развития процесса горения обычно необходимы,
горючее, окислитель и источник загорания. Горение прекращается, если нарушить какое – либо из этих условий. Так при тушении горящего дере­ва водой происходит охлаждение его ниже температуры воспламенения, при тушении горючих жидкостей пенами прекращается поступление паров горючего в зону горения.

Химический состав горючего вещества и соотношение компонентов горючей смеси имеет важное значение для процесса горения.

Различают два вида горения- полное (при достаточном и избыточном количестве кислорода) и неполное (при недостатке кислорода). Горение может быть диффузионным и кинети­ческим.

Рис. 21.1. Диффузионное пламя:

a - распределение концентрации газов в пла­мени; 1 - горючий газ; 2 - продукты сгора­ния; 3- фронт (поверхность) пламени; б - схематический разрез пламени (4, 5, 6 - зоны диффузионного пламени)

Если кислород проникает в зону гонения вследствие диффузии, то обра­зующееся пламя называется диффузи­онным (рис. 21.1). В зоне 6 находятся газы или пары; горение в этой зоне не происходит (температура в ней не превышает 500°С). В зоне 5 пары или газы сгорают неполностью и частично восстанавливаются до углерода. В зоне 4 происходит полное сгорание продук­тов зоны 5 и наблюдается наиболее высокая температура пламени. Высота пламени обратно пропорциональна ко­эффициенту диффузии, который в свою очередь пропорционален температуре в степени от 0,5 до 1. Высота пламени возрастает с увеличением скорости по­тока газов и изменяется обратно про­порционально плотности газов и паров.

От диффузионного отличается пла­мя, образующееся при кинетическом

горении, т. е. заранее перемешанного горючего газа с воздухом. Это пламя при воспламенении какой-либо части объема горючей смеси пред­ставляет собой светящуюся зону, в которой соприкасаются друг с другом свежая смесь и продукты горения; зона горения всегда движется в сто­рону свежей горючей смеси, а фронт пламени имеет большей частью сферическую форму. При сгорании смеси горючих газов или паров с воздухом, подаваемых с определенной скоростью в зону горения, образуется стационарное пламя, имеющее форму конуса. Во внутрен­ней части конуса смесь подогревается до температуры воспламенения. В остальной части конуса происходит горение, характер которого за­висит от состава смеси. Если в смеси недостаточно кислорода, то во внешней части конуса происходит полное сгорание продуктов, образо­вавшихся при неполном горении во внутренней части конуса.

Таким образом, в пламени одновременно могут происходит процес­сы диффузионного горения и горения предварительно смешанных ком­понентов горючей смеси.

Следует различать также гомогенное и гетерогенное горение. Гомо­генным является горение газообразных веществ, гетерогенным - ве­ществ других агрегатных состояний. Гетерогенное горение является од­новременно и диффузионным.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация