Ли ртуть. Разбился градусник - что делать? Профилактика отравления ртутью из градусника

Главная / Земля

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия

В естественных условиях ртуть встречается в минералах и почве. При комнатной температуре ртуть находится в жидком состоянии. Чтобы обнаружить ртуть в домашних условиях, для начала проверьте различные измерительные устройства. Термометры, барометры и другие приборы часто содержат ртуть. Можно также проверить некоторые виды осветительных ламп, антикварные предметы и небольшие батарейки. Если вы обнаружите ртуть в доме, осторожно соберите ее, чтобы она не расплескалась или не испарилась.

Шаги

Как проверить приборы и устройства на содержание ртути

    Проверьте термометр. В старых термометрах часто использовали ртуть. Если вы обнаружите в старом термометре блестящую жидкость, это может быть ртуть.

    Проверьте барометр. Если у вас есть старый барометр (прибор, измеряющий давление воздуха), он может содержать жидкую ртуть. Посмотрите, нет ли в центральной трубке барометра серебристо-белой жидкости.

    • Барометр может находиться как внутри, так и снаружи дома.
  1. Проверьте наличие ртути в газовых устройствах. Во многих газовых устройствах используются ртутные тепловые датчики (или датчики пламени). Эти небольшие устройства называют также автоматическими запорными клапанами газа, и они повсеместно используются в газовых духовках, плитах и нагревателях воды для того, чтобы остановить поток газа в том случае, если он не вырабатывает тепло. Проверьте, нет ли в этих устройствах жидкой ртути.

    Проверьте другие устройства и измерительные приборы. Есть множество других устройств и приборов, которые могут содержать жидкую ртуть. Например, при проблемах со здоровьем дома часто держат сфигмоманометр (прибор для измерения кровяного давления), в котором используется жидкая ртуть. Жидкая ртуть может содержаться также в следующих устройствах и приборах:

    • дилататоры пищевода (кардиодилататоры), трахеальные трубки, желудочно-кишечные зонды;
    • расходомеры;
    • гидрометры;
    • психрометры;
    • манометры;
    • пирометры.
  2. Проверьте антикварные часы. В XVII веке и ранее в часах часто использовали жидкую ртуть, чтобы придать необходимый вес маятнику. Если у вас есть старинные часы, они могут содержать ртуть.

Как предотвратить контакт с жидкой ртутью

    Избавьтесь от устройств, которые содержат жидкую ртуть. Если вы обнаружите предметы, которые содержат или могут содержать ртуть, замените их аналогами, в которых нет ртути. Например, вместо старого ртутного термометра приобретите новый цифровой.

    Осторожно обращайтесь с содержащими ртуть устройствами. Например, если у вас старый стеклянный термометр с ртутью, не бросайте его небрежно на стол. Аккуратно кладите термометр на мягкую поверхность и бережно храните его.

    • К примеру, можно заворачивать ртутный термометр в мягкую тряпку и хранить его в прочной деревянной коробке.
  1. Замените содержащие ртуть устройства. Не выбрасывайте лампочки и другие содержащие ртуть устройства в контейнер для мусора. Они могут разбиться и загрязнить окрестности. Вместо этого свяжитесь с местной компанией по утилизации бытовой техники и спросите, принимают ли они содержащие ртуть устройства.

    • Если да, следуйте их рекомендациям.
    • Если нет, поинтересуйтесь, не знают ли они, кто принимает бытовую технику с ртутью.

Как обращаться с пролитой ртутью

  1. Соберите мелкие капли ртути с помощью медицинской пипетки. Если вы расплескали небольшое количество ртути (например, разбили термометр), предупредите всех в доме, чтобы они не подходили к загрязненному месту, пока вы не очистите его. Наденьте одноразовые перчатки и с помощью медицинской пипетки соберите жидкую ртуть. Поместите капли в плотно закрывающуюся емкость (например, в старый пузырек из-под лекарств).

Постановка вопроса сама по себе уже предполагает наличие этого крайне ядовитого жидкого металла в осветительных устройствах (мол, любое устройство, по определению, должно содержать ртуть). Но на сегодняшний день – это уже далеко не так . Вместе с наступлением нового тысячелетия началась и эра полупроводниковых светодиодных более энергоэффективных излучателей света, которые все более уверенно входят в нашу жизнь. Лампы на их основе не только абсолютно безвредны и экологичны, так они еще и могут дать фору всевозможным энергосберегающим устройствам предыдущего поколения. Если, к примеру, уровнять показатель светимости, то традиционная лампочка (накаливания) станет потреблять 100 Вт, люминесцентная лампа дневного света – 30 Вт, основанная на светодиодных излучателях – 16 Вт.

Но, тем не менее, люминесцентные излучатели на сегодняшний день – самые распространенные из экономичных.

Поэтому остается актуальным вопрос – есть ли ртуть в энергосберегающих лампах?

Вообще, да, есть! И ничего хорошего в ситуации, если такая лампочка дома лопнет, треснет либо упадет и разобьется, нет. Это потенциально опасно, но вот насколько?

Ртуть в энергосберегающей лампе

Сколько ртути в лампах?

В качестве эталонного примера можно привести традиционный градусник. В его колбе находится не более 2,6 г ртути; содержание ртутных паров в люминесцентном одноламповом светильнике – не превышает 1 – 5 мг (т. е. нескольких тысячных долей грамма). Серьезной интоксикации организма такое количество вызвать не может, однако, существуют крайне неприятные последствия.


Содержание ртути в лампе

Внимание! Еще в 2004 году были проведены прикладные исследования с разбиванием люминесцентных светильников. «Натурные испытания» проводились внутри закрытого контейнера, в котором разбилась энергосберегающая лампа. Эксперимент дал следующие результаты:

  1. Сразу после разбития колбы выделяется более 50% общего количества паров ртути, которых она содержала.
  2. Ртуть в количестве до 40% в виде пара плавно выделяется с осколков. (Оставшееся количество остается на связанном внутреннем покрытии разбитой колбы).
  3. За первые 24 часа из осколков выделяется примерно половина (т. е. до 20% от общего количества) токсичного металла. В итоге по истечении суток в атмосфере квартиры, если не сделать проветривания, скопится не менее 70% от 2,5 мг ртути (наиболее распространенное содержание).

Это приведет к тому, что предельно-допустимая концентрация высокореактивных и гигроскопичных паров ртути, которые будут содержаться в атмосфере дома, превысит норму в 5 – 10 раз (в зависимости от площади пространства). Но при этом концентрация будет в пределах т. н. «промышленного» ПДК.

Итак, резюме :

  • Быстро отравиться таким количеством ртути невозможно – ее содержание слишком ничтожно.
  • Реальную опасность представляет халатное поведение человека, когда лампа разбита, а он продолжает находиться в помещении, и не принимает мер по локализации осколков, а также сквозному проветриванию. Однако такой вред здоровью имеет накопительный характер, и его последствия проявляются в течение длительного времени.

Типы ламп со ртутью

Распространение ртутных ламп связано с активной эксплуатацией явления флуоресценции, где внутреннее покрытие колбы лампы (люминофор) «заставляют светиться» возбужденные электрическими разрядами пары ртути. Конечно же, как было представлено выше, они не являются полностью безопасными. Зато насколько они эффективны в области энергосбережения! Минимум в 3 раза (т. е. при том же потреблении электричества дают минимум в 3 раза более насыщенный световой поток в Люменах).

В зависимости от своего устройства выделяют следующие типы таких ламп:



Дуговая металлогалогенная
  • Металлогалогенная, зеркальная (в конструкции присутствует отсвечивающий зеркальный слой, благодаря этому такие лампы способны генерировать узконаправленный световой поток).
Металлогалогенная, зеркальная
  • Ртутно-кварцевая (этот вид ламп имеет видоизмененную форму колбы).

Ртутно-кварцевая
  • Флуоресцентная (наиболее привычная для нас лампа из офисных помещений).

Флуоресцентная лампа

Крупнейшими компаниями-поставщиками, работающими на рынке энергосберегающих ламп (у которых можно найти все указанные их разновидности), являются компании: Эсл; MAXUS (Максус) и C amelion .

Что делать, если разбилась энергосберегающая лампочка?

Нужно незамедлительно принять меры по локализации и устранению последствий. Следует помнить, что, как уже указывалось выше, прямой угрозы жизни и здоровью в данном случае нет, поэтому паниковать нет оснований. Также нет необходимости вызывать и ждать приезда специалистов из СЭС – все необходимые действия вы можете выполнить сами (ниже приводится примерная инструкция).


Разбитая энергосберегающая лампа

Порядок действий

  1. Следует сразу открыть все окна и двери, создав сквозняк. Помещение нужно покинуть минимум на 15 – 20 минут. Находиться в комнате в этот период – особенно вредно для здоровья.
  2. Сразу же нужно обесточить патрон разбитой лампы (лучше отключиться в щитке), затем вынуть цоколь (если он застрял).
  3. После истечения четверти часа необходимо надеть плотные резиновые перчатки и собрать все возможные осколки. Нельзя сгребать их рукой (даже в перчатке) – используйте листы бумаги. Осколки нужно поместить в отдельный пластиковый пакет.
  4. Кроме осколков, на полу будет рассыпан порошкообразный люминофор. Собирать его, а также совсем мелкие осколки, рекомендуется с помощью скотча.
  5. Последовательность уборки – от периферии помещения к центру.
  6. Далее – влажная уборка. Нужно вытащить из комнаты максимальное количество предметов мебели и не стоит экономить на сильных жидких моющих средствах (например, «Domestos»). Используйте столько, сколько нужно; основная задача – убрать все слои грязи, которые могут задержать внутренности колбы.
  7. Требуется также протереть и обувь (влажной губкой).
  8. Все те предметы, которые использовались во время уборки (губки/тряпки/листы бумаги) переходят в категорию содержащих ртуть отходов. Их недопустимо бросать в общее мусорное ведро. Поместите их в тот же пакет, где находятся осколки.
  9. Вот для утилизации этого пакета как раз понадобится помощь санитарно-эпидемиологической службы. Сдавать ртутьсодержащие отходы можно только им или другим специализированным организациям (можно посмотреть на официальном сайте СЭС).

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Недопустимо пользоваться предметами из материи (простыни, покрывала, одежда), на которые попали осколки разбитой лампы. Все они подлежат утилизации по описанной выше процедуре. Кроме того, любопытной представляется рекомендация врачей для тех, кто непосредственно проводит влажную уборку в помещении, где . Они рекомендуют им выспаться (однако, только не в этом помещении).

Идеальным вариантом при локализации такого рода аварий является обработка пола в помещении раствором обычной марганцовки (перманганата калия). Альтернативой является хлористое железо или же обычная сера. Однако обычная она только в том случае, если есть в наличии (а это как раз очень нетривиальный случай). Все эти реагенты очень хорошо связывают ртуть. Однако в случае их отсутствия следует выполнить указанный выше алгоритм.

Последствия

Пренебрежение правилами безопасности может повлечь серьезный урон здоровью. Если элементарно не проветрить помещение, то это может вызвать отравление парами ртути. Симптомы здесь следующие:

  • неестественное ощущение слабости в организме;
  • быстрое и глубокое (невыносимое) утомление;
  • тошнота, рвота, спазмы в области живота.

Разбитые ртутьсодержащие лампы могут стать причиной:

  • поражения центральной нервной системы;
  • поражения органов брюшной полости (ЖКТ, почек и печени);
  • поражения мочеполовой системы.

Утилизация энергосберегающих ламп

Энергосбережение начинает обходиться обществу слишком дорого с точки зрения обеспечения бытовой безопасности:

  • Любые содержащие ртуть или ее испарения промышленные изделия (и лампы в том числе) относятся к чрезвычайно опасным отходам.
  • Закон накладывает прямой, категорически запрет на смешение таких отслуживших свое объектов с другими предметами бытового мусора.
  • Для того чтобы просто оказывать услуги по приемке ртутьсодержащих объектов, нужно получить лицензию Росприроднадзора.

Утилизация перегоревших ламп путем складирования на открытых полигонах запрещена. В случае неконтролируемой свалки пары ртути из разбитых колб будут накапливаться в мусорном слое, конденсируясь на предметах и попадая в подземные водные горизонты вместе с осадками. Ртуть крайне гигроскопична (т. е. всепроникающая) и к тому же очень тяжела (13 т/м3).

Особую опасность представляет складирование под открытым небом газоразрядных ламп высокого давления. Рано или поздно, но под воздействием регулярного сезонного перепада температур такая лампа взорвется. Рассеивание осколков происходит в радиусе до 2 м. При этом именно такие лампы содержат наибольшее количество ртути (до 5 мг.).

Люминесцентные лампы представляют собой высокотехнологичные приборы, утилизация которых представляет собой капиталоемкую, нужно строить целые заводы, и экологически небезопасную, обращение со ртутью, процедуру. Включение в цену таких световых излучателей стоимости утилизации повлечет их удорожание до уровня едва ли не превышающего стоимость новых светодиодных ламп. Поэтому во всем мире наблюдается отставание переработки, судьба использованных ртутьсодержащих осветительных элементов чем-то напоминает судьбу отработанного ядерного топлива – складирование и накопление до лучших времен.

  • Появляется острое желание решить проблему мелких осколков с помощью пылесоса. Быстро, удобно, качественно. Однако выше указывалась удельная масса ртути – 13 т/м3. Это также означает чудовищную плотность ее испарения. Один шарик ртути, размером в 3 мм в диаметре способен отравлять воздух в течение 3 лет! Не нужно думать, что если ртути не видно, то ее нет. Микроскопические шарики еще более опасны, так как совокупная площадь их поверхности сильно увеличивается. И тут представьте, что вы начинаете использовать пылесос. Никакие фильтры не задержат пары ртути, оксидная пленка, покрывающая шарики, будет разбита, а интенсивность испарения с помощью вентилятора пылесоса вырастет на несколько порядков. За какие-то несколько секунд использования ПДК ртути в помещении может быть превышено в 100 и более раз.
  • Если количество разбитых ламп превышает хотя бы 2 шт., то устранение последствий аварии своими силами становится, во-первых, невозможным, а во-вторых, опасным для здоровья. Сложность здесь в том, чтобы элементарно проветрить помещение. Когда паров ртути становится больше, они плохо взаимодействуют с конвекционными потоками внутри комнаты. Требуется установка вентиляторов и проветривание в течение нескольких часов. При этом направлять вентиляторы нужно не только в сторону окна, но и обязательно нужно выдувать испарения из углов. Если у вас есть сразу несколько таких устройств, и вы понимаете, как их нужно располагать, тогда, конечно, можно попробовать справиться самостоятельно. Но, как правило, таких возможностей нет, поэтому следует дождаться специалистов.
  • Простая замена ртутьсодержащих ламп – дело квалифицированных мастеров. В странах постсоветского пространства хозяевам домов фактически запрещено прикасаться к этим приборам. Закон перестраховывается: ведь именно отсутствие осознания последствий (в полной мере) приводит к незначительным, на первый взгляд, авариям, влекущим тяжелые последствия для здоровья у всех окружающих в течение длительного времени. Лучше уж пусть выкручивают профессионалы.

Первые сведения о соединениях, содержащих ртуть, доходят до нас из глубины веков. Аристотель упоминает о ней впервые в 350 году до нашей эры, но археологические находки говорят о более раннем сроке применения. Основными направлениями использования ртути были медицина, живопись и архитектура, изготовление венецианских зеркал, обработка металлов и т. д. Ее свойства люди выясняли только экспериментальным путем, что требовало большого количества времени и стоило многих жизней. О том, что ртуть опасна для человека, известно с момента начала ее использования. Современные методы и способы исследования гораздо эффективнее и безопаснее, но все равно многого об этом металле люди еще не знают.

Химический элемент

При нормальных условиях ртуть - это тяжелая жидкость бело-серебристого цвета, ее принадлежность к металлам была доказана М. В. Ломоносовым и И. А. Брауном в 1759 году. Ученые доказали, что в твердом агрегатном состоянии она электропроводна и может подвергаться ковке. Ртуть (Hydrargyrum, Hg) в периодической системе Д. И. Менделеева имеет атомный номер 80, располагается в шестом периоде, 2 группе и относится к подгруппе цинка. В переводе с латинского языка название дословно означает «серебряная вода», с древнерусского - «катиться». Уникальность элемента заключается уже в том, что это единственный который в природе находится в рассеянном виде и встречается в виде соединений. Капля ртути, скатывающаяся по горной породе, - явление невозможное. Молярная масса элемента - 200 г/моль, радиус атома - 157 пм.

Свойства

При температуре 20 о С удельный вес ртути составляет 13,55 г/см 3 , для процесса плавления необходимы -39 о С, для кипения - 357 о С, для замерзания -38,89 о С. Повышенное давление насыщенных паров дает высокую скорость испарения. При повышении температуры пары ртути становятся наиболее опасными для живых организмов, причем для данного процесса не является преградой вода или любая другая жидкость. Наиболее востребованное на практике свойство - получение амальгамы, которая образуется в результате растворения металла в ртути. При ее большом количестве сплав получается полужидкого агрегатного состояния. Ртуть легко выходит из соединения, что используется в процессе извлечения драгоценных металлов из руды. Амальгамированию не поддаются такие металлы, как вольфрам, железо, молибден, ванадий. В химическом отношении ртуть - достаточно стойкий элемент, который легко переходит в самородное состояние и вступает в реакцию с кислородом только при высокой температуре (300 о С). При взаимодействии с кислотами растворение происходит только в азотной кислоте и Металлическая ртуть окисляется серой или перманганатом калия. Она активно вступает в реакцию с галогенами (йод, бром, фтор, хлор) и неметаллами (селен, фосфор, сера). Органические соединения с атомом углерода (алкил-ртутные) являются наиболее стабильными и формируются в природных условиях. Метилртуть считается одним из наиболее токсичных металлоорганических соединений с короткой цепочкой связей. В этом состоянии ртуть опасность для человека приобретает наивысшую.

Нахождение в природе

Если рассматривать ртуть в качестве полезного ископаемого, которое применяется во многих отраслях промышленности и сферах хозяйственной деятельности человека, то это достаточно редкий металл. По оценкам специалистов, в поверхностном слое земной коры содержится всего 0,02 % от общего количества упомянутого элемента. Наибольшая часть ртути и ее соединений находится в водах Мирового океана и рассеяна в атмосфере. Последние исследования показывают, что большое содержание данного элемента содержит мантия Земли. В соответствии с этим утверждением возникло такое понятие, как «ртутное дыхание Земли». Оно заключается в процессе дегазации при дальнейшем испарении с поверхности. Наибольший выброс ртути происходит в момент извержения вулканов. В дальнейшем естественные и техногенные выбросы включаются в круговорот, который происходит за счет соединения с другими элементами при благоприятных природных условиях. Процесс образования и распада паров ртути изучен слабо, но наиболее вероятной гипотезой считается участие в нем некоторых видов бактерий. Но основной проблемой являются метил- и демитил-производные соединения, которые активно образуются в природе - в атмосфере, воде (придонные илистые участки или секторы наибольшего загрязнения органическими веществами) - без участия катализаторов. Метилртуть обладает очень высоким сходством с биологическими молекулами. Чем опасна ртуть - так это возможностью накопления в любом живом организме за счет легкости проникновения и адаптации.

Месторождения

Ртутьсодержащих и ртутных минералов насчитывается более 100, но основным соединением, которое обеспечивает рентабельность добычи, выступает киноварь. В процентном отношении она имеет следующую структуру: сера 12-14 %, ртуть 86-88 %, при этом самородная ртуть, блеклые руды, метациннабарит и т. д. являются сопутствующими основному сульфидному минералу. Размеры кристаллов киновари достигают 3-5 см (максимум), наиболее распространенные имеют размер 0,1-0,3 мм и могут содержать примеси цинка, серебра, мышьяка и т. д. (до 20 элементов). Рудных участков в мире насчитывается около 500, наиболее продуктивно работают месторождения Испании, Словении, Италии, Киргизии. Для обработки руды применяют два основных метода: окисление при высокой температуре с высвобождением ртути и обогащение начального материала с последующей переработкой полученного концентрата.

Области применения

В связи с тем что опасность ртути доказана, с 70-х годов XX века ограничено ее применение в медицине. Исключением является мертиолят, используемый для консервации вакцин. Амальгама серебра на сегодняшний день еще встречается в стоматологии, но активно вытесняется светоотражаемыми пломбами. Наиболее широкое применение опасного металла фиксируется при создании приборов и точных инструментов. Пары ртути используются для работы люминесцентных и кварцевых ламп. В этом случае результат воздействия зависит от покрытия светопропускающего корпуса. За счет уникальной теплоемкости металлическая ртуть востребована при производстве высокоточных измерительных приборов - термометров. Сплавы используются для изготовления датчиков положения, подшипников, герметичных выключателей, электроприводов, вентилей и т. д. Биоцидные краски ранее тоже содержали ртуть и использовались для покрытия корпусов судна, что предотвращало их от обрастания. Химическая промышленность в больших объемах использует соли данного элемента как катализатор при выделении ацетальдегида. В сулему и каломель применяют для обработки семенного фонда - токсичная ртуть предохраняет зерно и семена от вредителей. В металлургии наиболее востребованы амальгамы. Соединения ртути часто используются в качестве электролитического катализатора для производства хлора, щелочи и активных металлов. Золотопромышленники применяют данный химический элемент для обработки руды. Ртуть и ее соединения используются в ювелирном деле, при производстве зеркал и вторичной переработке алюминия.

Токсичность (чем опасна ртуть)

В результате техногенной деятельности человека в окружающей нас среде повышается концентрация токсичных веществ, загрязнителей. Одним из таких элементов, обозначенных на первых позициях по ядовитости, является ртуть. Опасность для человека представляют органические и неорганические ее соединения и пары. Это кумулятивный высокотоксичный яд, который может накапливаться в организме человека годами или поступить единовременно. Поражается ЦНС, ферментативная и кроветворная система, а степень и исход отравления зависят от дозы и способа проникновения, токсичности соединения, времени воздействия. Хроническое отравление ртутью (накопление вещества в организме) характеризуется наличием астеновегетативного синдрома, нарушением деятельности нервной системы. Первыми признаками являются: дрожание век, кончиков пальцев, а затем конечностей, языка и всего тела. При дальнейшем развитии отравления проявляется бессонница, головные боли, тошнота, нарушение деятельности ЖКТ, неврастения, нарушается память. Если происходит отравление парами ртути, то характерными симптомами являются заболевания дыхательных путей. При непрекращающемся воздействии дает сбой выводящая система, что может повлечь летальный исход.

Отравление солями ртути

Наиболее быстро и сложно протекающий процесс. Симптомы: головная боль, металлический привкус, кровоточивость десен, стоматит, усиление мочеиспускания при постепенном его сокращении и полном прекращении. При тяжелой форме характерны повреждения почек, желудочно-кишечного тракта, печени. Если человек и выживет, то навсегда останется инвалидом. Действие ртути приводит к осаждению белков и гемолизу кровяных эритроцитов. На фоне данных симптомов имеет место необратимое поражение центральной нервной системы. Такой элемент, как ртуть, опасность для человека представляет в любой форме взаимодействия, а последствия отравления могут быть непоправимы: оказывая влияние на весь организм, они могут отражаться и на следующих поколениях.

Способы проникновения яда

Основными источниками отравления являются воздух, вода, пищевые продукты. Ртуть может проникать через дыхательные пути при испарении вещества с поверхности. Хорошей пропускной способностью обладает кожный покров и желудочно-кишечный тракт. Для отравления достаточно искупаться в водоеме, который загрязнен промышленными сбросами, содержащими ртуть; употребить в пищу продукты с высоким содержанием химического элемента, который может попасть в них из зараженных биологических видов (рыба, мясо). Отравление парами ртути получают, как правило, в результате профессиональной деятельности - при несоблюдении техники безопасности на связанных с данным элементом производствах. Не является исключением и отравление в бытовых условиях. Это происходит при ненадлежащей эксплуатации приборов и инструментов, содержащих ртуть и ее соединения.

Опасность ртути из градусника

Наиболее часто применяемый медицинский инструмент высокой точности - термометр, он имеется в каждом доме. В обычных бытовых условиях большинство людей не имеют доступа к высокотоксичным соединениям, в состав которых входит ртуть. «Разбили градусник» - это наиболее вероятная ситуация взаимодействия с ядом. Большинство наших соотечественников до сих пор пользуются ртутными термометрами. Это объясняется прежде всего точностью их показаний и недоверием населения к новым технологиям. В случае повреждения термометра ртуть опасность для человека, конечно, представляет, но еще большую угрозу таит безграмотность. Если быстро, качественно и эффективно провести ряд несложных манипуляций, то вред здоровью если и будет нанесен, то минимальный

Этап 1

Прежде всего необходимо собрать все части разбитого термометра и ртуть. Это наиболее трудоемкий процесс, но от его выполнения зависит здоровье всех членов семьи и домашних животных. Для правильной утилизации необходимо взять стеклянный сосуд, который обязательно должен герметично закрываться. Перед началом работ из помещения удаляются все жильцы, лучше всего выйти на улицу или в другую комнату, где есть возможность постоянного проветривания. Процесс сбора капель ртути нельзя выполнять при помощи пылесоса или веника. Последний может раздробить более крупные фракции металла и обеспечить большую площадь их распространения. При работе пылесосом опасность заключается в процессе нагревания двигателя во время работы, а воздействие температуры ускорит испаряемость частиц, и данная бытовая техника после этого не может быть использована по назначению, ее останется только утилизировать.

Последовательность действий

  1. Надеть одноразовые медицинскую маску, бахилы или полиэтиленовые пакеты на обувь.
  2. Тщательно осмотреть место, где был разбит термометр; если есть вероятность попадания ртути на текстильные изделия, одежду, ковры, то они герметично пакуются в мешок для мусора и утилизируются.
  3. Стеклянные части собираются в приготовленную тару.
  4. Большие капли ртути при помощи листа бумаги, иглы или спицы для вязания собираются с поверхности пола.
  5. Вооружившись фонариком или усилив освещенность комнаты, необходимо расширять поиск более мелких частиц (за счет цвета металла его легко найти).
  6. Тщательно осматриваются щели пола, стыки паркета, плинтуса для исключения возможного попадания более мелких капель.
  7. В труднодоступных местах ртуть собирается шприцем, который в дальнейшем подлежит утилизации.
  8. Мелкие капли металла можно собрать при помощи клейкой ленты, пластыря.
  9. В течение всего времени работы необходимо выходить в проветриваемое помещение или на улицу через каждые 20 минут.
  10. Все предметы и подручные средства, используемые при сборе ртути, необходимо утилизировать вместе с содержимым термометра.

Этап 2

После тщательной механической сборки необходимо произвести химическую обработку помещения. Использовать можно перманганат калия (марганцовку) - раствор высокой концентрации (темного цвета) в необходимом для обрабатываемой территории количестве. Обязательно необходимо надеть новые резиновые перчатки и маску. Все поверхности обрабатываются полученным раствором при помощи ветоши, а имеющиеся углубления, щели, трещины и стыки лучше всего заполнить раствором. На ближайшие 10 часов лучше оставить поверхность в неприкосновенном виде. По истечении указанного времени раствор перманганата калия смывается чистой водой, далее уборка производится с использованием моющих средств и во всей квартире. Следующие 6-7 дней обязательно проводить регулярное проветривание помещения и ежедневную влажную уборку. Чтобы удостовериться в отсутствии ртути, можно пригласить специалистов со специальным оборудованием из центров эпидемиологии.

Методы лечения интоксикации

ВОЗ выделяет 8 наиболее опасных веществ, содержание которых в атмосфере, пищевых продуктах и воде должно тщательно отслеживаться, в связи с их опасностью для жизни и здоровья человека. Это свинец, кадмий, мышьяк, олово, железо, медь, цинк и, конечно, ртуть. Класс опасности данных элементов очень высок, и последствия отравления ими невозможно купировать полностью. Основой лечения является ограждение человека от дальнейшего контакта с ядом. При несильных и нехронических случаях отравления ртутью она выводится из организма с калом, мочой, потом. Токсическая доза составляет 0,4 мл, смертельная - от 100 мг. При подозрении на взаимодействие с ядом необходимо обратиться к специалисту, который на основании результатов анализов определит степень интоксикации и назначит терапию.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация