Защита от ионизирующих излучений. Защита населения и территорий от ионизирующих излучений

Главная / Квартира

Ионизирующими называют излучения, взаимодействие которых со средой приводит к образованию электрических зарядов различных знаков. Источники этих излучений широко используются в технике, химии, медицине, сельском хозяйстве и других областях, например, при измерении плотности почв, обнаружении течей в газопроводах, измерении толщины листов, труб и стержней, антистатической обработке тканей, полимеризации пластмасс, радиационной терапии злокачественных опухолей и др. Однако следует помнить, что источники ионизирующего излучения представляют существенную угрозу здоровью и жизни использующих их людей.

Существуют два вида ионизирующих излучений:

§ корпускулярное, состоящее из частиц с массой покоя, отличной от нуля (альфа- и бета 1 -излучение и нейтронное излучение);

§ электромагнитное (гамма(γ)-излучение и рентгеновское) с очень малой длиной волны.

1 В литературе принято обозначать альфа- и бета-частицы с помощью соответствующих греческих букв – а-частицы и β-частицы.

Рассмотрим основные характеристики указанных излучений. Альфа(а)-излучение представляет собой поток ядер гелия, обладающих большой скоростью. Эти ядра имеют массу 4 и заряд +2. Они образуются при радиоактивном распаде ядер или при ядерных реакциях. В настоящее время известно более 120 искусственных и естественных альфа-радиоактивных ядер, которые, испуская альфа-частицу, теряют 2 протона и 2 нейтрона.

Энергия альфа-частиц не превышает нескольких МэВ 1 . Излучаемые альфа-частицы движутся практически прямолинейно со скоростью примерно 20 000 км/с.

1 МэВ – единица энергии (мега-электрон-вольт), применяемая в атомной и ядерной физике. 1МэВ = 10 6 эВ (электрон-вольт). Для перевода значений энергии излучения в систему СИ пользуются следующими соотношениями: 1 эВ = 1,60206 10 -19 Дж; 1 МэВ = 1,60206 10 -13 Дж.

Под длиной пробега частицы в воздухе или других средах принято называть наибольшее расстояние от источника излучения, при котором еще можно обнаружить частицу до ее поглощения веществом. Длина пробега частицы зависит от заряда, массы, начальной энергии и среды, в которой происходит движение. С возрастанием начальной энергии частицы и уменьшением плотности среды длина пробега увеличивается. Если начальная энергия излучаемых частиц одинакова, то тяжелые частицы обладают меньшими скоростями, чем легкие. Если частицы движутся медленно, то их взаимодействие с атомами вещества среды более эффективно и частицы быстрее растрачивают имеющийся у них запас энергии.

Длина пробега альфа-частиц в воздухе обычно менее 10 см. Так, например, альфа-частицы с энергией 4 МэВ обладают длиной пробега в воздухе примерно в 2,5 см. В воде или в мягких тканях человеческого тела, плотность которых более чем в 700 раз превышает плотность воздуха, длина пробега альфа-частиц составляет несколько десятков микрометров. За счет своей большой массы при взаимодействии с веществом альфа-частицы быстро теряют свою энергию. Это объясняет их низкую проникающую способность и высокую удельную ионизацию: при движении в воздушной среде альфа-частица на 1 см своего пути образует несколько десятков тысяч пар заряженных частиц – ионов.

Бета-излучение представляет собой поток электронов (β - -излучение, или, чаще всего, просто β -излучение) или позитронов (β + -излучение), возникающих при радиоактивном распаде. В настоящее время известно около 900 бета-радиоактивных изотопов.

Масса бета-частиц в несколько десятков тысяч раз меньше массы альфа-частиц. В зависимости от природы источника бета-излучений скорость этих частиц может лежать в пределах 0,3 – 0,99 скорости света. Энергия бета-частиц не превышает нескольких МэВ, длина пробега в воздухе составляет приблизительно 1800 см, а в мягких тканях человеческого тела ~ 2,5 см. Проникающая способность бета-частиц выше, чем альфа-частиц (из-за меньших массы и заряда). Например, для полного поглощения потока бета-частиц, обладающих максимальной энергией 2 МэВ, требуется защитный слой алюминия толщиной 3,5 мм. Ионизирующая способность бета-излучения ниже, чем альфа-излучения: на 1 см пробега бета-частиц в среде образуется несколько десятков пар заряженных ионов.

Нейтронное излучение представляет собой поток ядерных частиц, не имеющих электрического заряда. Масса нейтрона приблизительно в 4 раза меньше массы альфа-частиц. В зависимости от энергии различают медленные нейтроны (с энергией менее 1 КэВ 1), нейтроны промежуточных энергий (от 1 до 500 КэВ) и быстрые нейтроны (от 500 КэВ до 20 МэВ). Среди медленных нейтронов различают тепловые нейтроны с энергией менее 0,2 эВ. Тепловые нейтроны находятся по существу в состоянии термодинамического равновесия с тепловым движением атомов среды. Наиболее вероятная скорость движения таких нейтронов при комнатной температуре составляет 2200 м/с. При неупругом взаимодействии нейтронов с ядрами атомов среды возникает вторичное излучение, состоящее из заряженных частиц и гамма-квантов (гамма-излучение). При упругих взаимодействиях нейтронов с ядрами может наблюдаться обычная ионизация вещества. Проникающая способность нейтронов зависит от их энергии, но она существенно выше, чем у альфа- или бета-частиц. Так, длина пробега нейтронов промежуточных энергий составляет около 15 м в воздушной среде и 3 см в биологической ткани, аналогичные показатели для быстрых нейтронов – соответственно 120 м и 10 см. Таким образом, нейтронное излучение обладает высокой проникающей способностью и представляет для человека наибольшую опасность из всех видов корпускулярного излучения. Мощность нейтронного потока измеряется плотностью потока нейтронов (нейтр./см 2 с).

1 1 КэВ (кило-электрон-Вольт) - 10 3 эВ.

Гамма-излучение (γ-излучение) представляет собой электромагнитное излучение с высокой энергией и с малой длиной волны 1 . Оно испускается при ядерных превращениях или взаимодействии частиц. Высокая энергия (0,01–3МэВ) и малая длина волны обусловливает большую проникающую способность гамма-излучения. Гамма-лучи не отклоняются в электрических и магнитных полях. Это излучение обладает меньшей ионизирующей способностью, чем альфа- и бета-излучение.

1 Начиная от длины волны 2-10 -2 нм в сторону коротких длин волн расположены гамма-лучи, возникающие при радиоактивном распаде атомов. Таким образом, электромагнитные излучения различного происхождения в этой области длин волн перекрываются, и их называют гамма-излучением или рентгеновским излучением в зависимости от источника.

Рентгеновское излучение может быть получено в специальных рентгеновских трубах, в ускорителях электронов, в среде, окружающей источник бета-излучения, и др. Рентгеновские лучи представляют собой один из видов электромагнитного излучения. Энергия его обычно не превышает 1 МэВ.

В качестве примера определим длину волны γ -излучения с энергией 0,048 МэВ.

Используя известное соотношение 1 эВ = 1,602 10 -19 Дж, выразим энергию γ-излучения в джоулях:

Энергия γ-излучения определяется следующей формулой:

, (19.2 )

где h – постоянная планка (h = 6,626 10 -34 Дж-с);

v – частота кванта электромагнитной энергии, гц;

с – скорость света (с ≈ 3,00 10 8 м/с);

λ – длина волны, м.

Рентгеновское излучение, как и гамма-излучение, обладает малой ионизирующей способностью и большой глубиной проникновения.

Рассмотрим основные показатели и единицы измерения, применяемые для характеристики ионизирующих излучений. Как уже сказано выше, при распаде ядер атомов его продукты вылетают с большой скоростью. Встречая на своем пути ту или иную преграду, они производят в ее веществе различные изменения. Воздействие излучения на вещество будет тем больше, чем больше распадов происходит в единицу времени. Для характеристики числа распадов вводится понятие активности (А) радиоактивного вещества, под которым понимают число самопроизвольных ядерных превращений dN в этом веществе за малый промежуток времени dt , деленное на этот промежуток времени:

А = . (19.3 )

Единицей измерения активности является Кюри (Кu ), соответствующая 3,7 10 10 ядерных превращений в секунду. Такая активность соответствует активности 1 г радия-226. Гораздо реже используется единица активности беккерель (Бк)

1 Кu = 3,7.10 11 Бк.

Для характеристики воздействия ионизирующего излучения на вещество введено понятие дозы излучения. Дозой излучения называется часть энергии, переданная излучением веществу и поглощенная им. Количественной характеристикой взаимодействия ионизирующего излучения и вещества является поглощенная доза излучения (Д), равная отношению средней энергии dE , переданной ионизирующим излучением веществу в элементарном объеме, к массе облученного вещества в этом объеме dm :

. (19.4 )

Поглощенная доза является основной дозиметрической величиной. В системе СИ в качестве единицы поглощенной дозы принят грей (Гр). 1 Гр соответствует поглощению в среднем 1 Дж энергии ионизирующего излучения в массе вещества, равной 1 кг, т. е. 1 Гр = 1 Дж/кг 1 .

1 Ранее в качестве единицы поглощенной дозы использовался рад (рд). Он соответствовал поглощению в среднем 100 эрг.

До недавнего времени за количественную характеристику только рентгеновского и гамма-излучения, основанную на их ионизирующем действии, принималась экспозиционная доза Х – отношение полного электрического заряда dQ ионов одного знака, возникающих в малом объеме сухого воздуха, к массе воздуха dm в этом объеме, т. е.

. (19.5 )

Единицей экспозиционной дозы в системе СИ является кулон на килограмм (Кл/кг) 1 .

1 Внесистемной единицей дозы рентгеновского и гамма-излучения является рентген (р) – доза излучения, при которой суммарный заряд положительных или отрицательных ионов, образующихся в 1,293 10 - 6 кг воздуха, равен 0,33 10 -9 кулонов. Это соответствует образованию 2,08 10 9 пар одновалентных ионов в 1 см 3 воздуха при нормальных условиях (Т= 273 К, Р = 1,01325 10 5 Па) и связано с затратой энергии около 87 10 -7 Дж/кг; 1P = 2,58 10 -4 Кл/кг = 0,88 рад.

Для оценки возможного ущерба здоровья при хроническом воздействии ионизирующего излучения произвольного состава введено понятие эквивалентной дозы (Н). Эта величина определяется как произведение поглощенной дозы Д на средний коэффициент качества излучения Q (безразмерный) в данной точке ткани человеческого тела, т. е.:

Единицей эквивалентной дозы в системе СИ является зиверт 2 (Зв). В табл. 19.1 представлены сведения о величинах коэффициента Q.

2 Существует специальная единица эквивалентной дозы – биологический эквивалент рентгена (бэр). 1 бэр – это количество энергии любого вида излучения, поглощенного в биологической ткани, биологическое действие которого эквивалентно действию 1 рад рентгеновского или гамма-излучения; 1 Зв = 100 бэр.

Существует еще одна характеристика ионизирующего излучения – мощность дозы Х (соответственно поглощенной, экспозиционной или эквивалентной), представляющая собой приращение дозы за малый промежуток времени dx , деленное на этот промежуток dt . Так, мощность экспозиционной дозы (Х или W , Кл/кг-с) составит:

Аналогично рассчитывают мощность поглощенной (Гр/с) или эквивалентной (Зв/с) доз.

Биологическое действие рассмотренных излучений на организм человека различно.

Альфа-частицы, проходя через вещество и сталкиваясь с атомами, ионизируют (заряжают) их, выбивая электроны. В редких случаях эти частицы поглощаются ядрами атомов, переводя их в состояние с большей энергией. Эта избыточная энергия способствует протеканию различных химических реакций, которые без облучения не идут или идут очень медленно. Альфа-излучение производит сильное действие на органические вещества, из которых состоит человеческий организм (жиры, белки и углеводы). На слизистых оболочках это излучение вызывает ожоги и другие воспалительные процессы.

Под действием бета-излучений происходит радиолиз (разложение) воды, содержащейся в биологических тканях, с образованием водорода, кислорода, пероксида водорода Н 2 О 2 , заряженных частиц (ионов) ОН - и НО . Продукты разложения воды обладают окислительными свойствами и вызывают разрушение многих органических веществ, из которых состоят ткани человеческого организма.

Действие гамма- и рентгеновского излучений на биологические ткани обусловлено в основном образующимися свободными электронами. Нейтроны, проходя через вещество, производят в нем наиболее сильные изменения по сравнению с другими ионизирующими излучениями.

Таким образом, биологическое действие ионизирующих излучений сводится к изменению структуры или разрушению различных органических, веществ (молекул), из которых состоит организм человека. Это приводит к нарушению биохимических процессов, протекающих в клетках, или даже к их гибели 1 , в результате чего происходит поражение организма в целом.

1 Биологическое действие ионизирующих излучений зависит от числа образовавшихся пар ионов, которое определяется поглощенной энергией излучения.

Различают внешнее и внутреннее облучение организма. Под внешним облучением понимают воздействие на организм ионизирующих излучений от внешних по отношению к нему источников. Внутреннее облучение осуществляется радиоактивными веществами, попавшими внутрь организма через дыхательные органы, желудочно-кишечный тракт или через кожные покровы. Источники внешнего излучения – космические лучи, естественные радиоактивные источники, находящиеся в атмосфере, воде, почве, продуктах питания и др., источники альфа-, бета-, гамма-, рентгеновского и нейтронного излучений, используемые в технике и медицине, ускорители заряженных частиц, ядерные реакторы (в том числе и аварии на ядерных реакторах) и ряд других.

Радиоактивные вещества, вызывающие внутреннее облучение организма, попадают в него при приеме пищи, курении, питье загрязненной воды. Поступление радиоактивных веществ в человеческий организм через кожу происходит в редких случаях (если кожа имеет повреждения или открытые раны). Внутреннее облучение организма длится до тех пор, пока радиоактивное вещество не распадется или не будет выведено из организма в результате процессов физиологического обмена. Внутреннее облучение опасно тем, что вызывает длительно незаживающие язвы различных органов и злокачественные опухоли.

При работе с радиоактивными веществами значительному облучению подвергаются руки операторов. Под действием ионизирующих излучений развивается хроническое или острое (лучевой ожог) поражение кожи рук. Хроническое поражение характеризуется сухостью кожи, появлением на ней трещин, изъязвлением и другими симптомами. При остром поражении кистей рук возникают отеки, омертвление тканей, язвы, на месте образования которых возможно развитие злокачественных опухолей.

Под влиянием ионизирующих излучений у человека возникает лучевая болезнь. Различают три степени ее: первая (легкая), вторая и третья (тяжелая).

Симптомами лучевой болезни первой степени являются слабость, головные боли, нарушение сна и аппетита, которые усиливаются на второй стадии заболевания, но к ним дополнительно присоединяются нарушения в деятельности сердечно-сосудистой системы, изменяется обмен веществ и состав крови, происходит расстройство пищеварительных органов. На третьей стадии болезни наблюдаются кровоизлияния и выпадение волос, нарушается деятельность центральной нервной системы и половых желез. У людей, перенесших лучевую болезнь, повышается вероятность развития злокачественных опухолей и заболеваний кроветворных органов. Лучевая болезнь в острой (тяжелой) форме развивается в результате облучения организма большими дозами ионизирующих излучений за короткий промежуток времени. Опасно воздействие на организм человека и малых доз радиации, так как при этом могут произойти нарушение наследственной информации человеческого организма, возникнуть мутации 1 .

1 Мутация – резкое наследственное изменение организмов, меняющее их основные признаки.

Нижний уровень развития легкой формы лучевой болезни возникает при эквивалентной дозе облучения приблизительно 1 Зв, тяжелая форма лучевой болезни, при которой погибает половина всех облученных, наступает при эквивалентной дозе облучения 4,5 Зв. 100%-ный смертельный исход лучевой болезни соответствует эквивалентной дозе облучения 5,5–7,0 Зв.

В настоящее время разработан ряд химических препаратов (протекторов), существенно снижающих негативный эффект воздействия ионизирующего излучения на организм человека.

В России предельно допустимые уровни ионизирующего облучения и принципы радиационной безопасности регламентируются «Нормами радиационной безопасности» НРБ-76, «Основными санитарными правилами работы с радиоактивными веществами и другими источниками ионизирующих излучений» ОСП72-80. В соответствии с этими нормативными документами нормы облучения установлены для следующих трех категорий лиц:

§ категория А – персонал, постоянно или временно работающий с источниками ионизирующих излучений;

§ категория Б – ограниченная часть населения, которая по условиям размещения рабочих мест или по условиям проживания может подвергаться воздействию источников излучения;

§ категория В – население страны, республики, края и области.

Для лиц категории А основным дозовым пределом является индивидуальная эквивалентная доза внешнего и внутреннего излучения за год (Зв/год) в зависимости от радиочувствительности органов (критические органы). Это предельно допустимая доза (ПДД) – наибольшее значение индивидуальной эквивалентной дозы за год, которое при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Для персонала категории А индивидуальная эквивалентная доза (Н, Зв), накопленная в критическом органе за время Т (лет) с начала профессиональной работы, не должна превышать значения, определяемого по формуле: Н == ПДД · Т.

Кроме того, доза, накопленная к 30 годам, не должна превышать 12 ПДД.

Для категории Б установлен предел дозы за год (ПД, Зв/год), под которым понимают наибольшее среднее значение индивидуальной эквивалентной дозы за календарный год у критической группы лиц, при котором равномерное облучение в течение 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами В табл. 19.2 приведены основные дозовые пределы внешнего и внутреннего облучений в зависимости от радиочувствительности органов.

19.2. Защита от действия ионизирующих излучений

Основные принципы радиационной безопасности заключаются в непревышении установленного основного дозового предела, исключении всякого необоснованного облучения и снижении дозы излучения до возможно низкого уровня. С целью реализации этих принципов на практике обязательно контролируются дозы облучения, полученные персоналом при работе с источниками ионизирующих излучений, работа проводится в специально оборудованных помещениях, используется защита расстоянием и временем, применяются различные средства коллективной и индивидуальной защиты.

Для определения индивидуальных доз облучения персонала необходимо систематически проводить радиационный (дозиметрический) контроль, объем которого зависит от характера работы с радиоактивными веществами. Каждому оператору, имеющему контакт с источниками ионизирующих излучений, выдается индивидуальный дозиметр 1 для контроля полученной дозы гамма-излучений. В помещениях, где проводится работа с радиоактивными веществами, необходимо обеспечить и общий контроль за интенсивностью различных видов излучений. Эти помещения должны быть изолированы от прочих помещений, оснащены системой приточно-вытяжной вентиляции с кратностью воздухообмена не менее пяти. Окраска стен, потолка и дверей в этих помещениях, а также устройство пола выполняются таким образом, чтобы исключить накопление радиоактивной пыли и избежать поглощения радиоактивных аэрозолей, паров и жидкостей отделочными материалами (окраска стен, дверей и в некоторых случаях потолков должна производиться масляными красками, полы покрываются материалами, не впитывающими жидкости, – линолеумом, полихлорвиниловым пластикатом и др.). Все строительные конструкции в помещениях, где проводится работа с радиоактивными веществами, не должны иметь трещин и несплошностей; углы закругляют для того, чтобы не допустить скопления в них радиоактивной пыли и облегчить уборку. Не менее одного раза в месяц проводят генеральную уборку помещений с обязательным мытьем горячей мыльной водой стен, окон, дверей, мебели и оборудования. Текущая влажная уборка помещений проводится ежедневно.

1 Устройство дозиметров описано ниже.

Для уменьшения облучения персонала все работы с этими источниками проводят с использованием длинных захватов или держателей. Защита временем заключается в том, что работу с радиоактивными источниками проводят за такой период времени, чтобы доза облучения, полученная персоналом, не превышала предельно допустимого уровня.

Коллективные средства защиты от ионизирующих излучений регламентируются ГОСТом 12.4.120-83 «Средства коллективной защиты от ионизирующих излучений. Общие требования». В соответствии с этим нормативным документом основными средствами защиты являются стационарные и передвижные защитные экраны, контейнеры для транспортирования и хранения источников ионизирующих излучений, а также для сбора и транспортировки радиоактивных отходов, защитные сейфы и боксы и др.

Стационарные и передвижные защитные экраны предназначены для снижения уровня излучения на рабочем месте до допустимой величины. Если работу с источниками ионизирующих излучений проводят в специальном помещении – рабочей камере, то экранами служат ее стены, пол и потолок, изготовленные из защитных материалов. Такие экраны носят название стационарных. Для устройства передвижных экранов используют различные щиты, поглощающие или ослабляющие излучение.

Экраны изготавливают из различных материалов. Их толщина зависит от вида ионизирующего излучения, свойств защитного материала и необходимой кратности ослабления излучения k . Величина k показывает, во сколько раз необходимо понизить энергетические показатели излучения (мощность экспозиционной дозы, поглощенную дозу, плотность потока частиц и др.), чтобы получить допустимые значения перечисленных характеристик. Например, для случая поглощенной дозы k выражается следующим образом:

где D – мощность поглощенной дозы;

D 0 – допустимый уровень поглощенной дозы.

Для сооружения стационарных средств защиты стен, перекрытий, потолков и т. д. используют кирпич, бетон, баритобетон и баритовую штукатурку (в их состав входит сульфат бария – BaSO 4). Эти материалы надежно защищают персонал от воздействия гамма- и рентгеновского излучения.

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.

Защитные сейфы применяются для хранения источников гамма-излучения. Они изготавливаются из свинца и стали.

Для работы с радиоактивными веществами, обладающими, альфа- и бета-активностью, используют защитные перчаточные боксы.

Защитные контейнеры и сборники для радиоактивных отходов изготавливаются из тех же материалов, что и экраны – органического стекла, стали, свинца и др.

При проведении работ с источниками ионизирующих излучений опасная зона 1 должна быть ограничена предупреждающими надписями.

1 Опасная зона – это пространство, в котором возможно воздействие на работающего опасного и (или) вредного производственных факторовданном случае – ионизирующих излучений).

Принцип действия приборов, предназначенных для контроля за персоналом, который подвергается воздействию ионизирующих излучений, основан на различных эффектах, возникающих при взаимодействии этих излучений с веществом. Основные методы обнаружения и измерения радиоактивности – ионизация газа, сцинтилляционные и фотохимические методы. Наиболее часто используется ионизационный метод, основанный на измерении степени ионизации среды, через которую прошло излучение.

Сцинтилляционные методы регистрации излучений основаны на способности некоторых материалов, поглощая энергию ионизирующего излучения, превращать ее в световое излучение. Примером такого материала может служить сульфид цинка (ZnS ). Сцинтилляционный счетчик представляет собой фотоэлектронную трубку с окошком, покрытым сульфидом цинка. При попадании внутрь этой трубки излучения возникает слабая вспышка света, которая приводит к возникновению в фотоэлектронной трубке импульсов электрического тока. Эти импульсы усиливаются и подсчитываются.

Фотохимические методы, или методы авторадиографии, основаны на воздействии радиоактивного образца на слой фотоэмульсии, содержащий галогениды серебра. Уровень радиоактивности образца оценивают после проявления пленки.

Существуют и другие методы определения ионизирующих излучений, например калориметрические, которые основаны на измерении количества тепла, выделяющегося при взаимодействии излучения с поглощающим веществом.

Приборы дозиметрического контроля делятся на две группы: дозиметры, используемые для количественного измерения мощности дозы, и радиометры или индикаторы излучения, применяемые для быстрого обнаружения радиоактивных загрязнений.

Из отечественных приборов применяются, например, дозиметры марок ДРГЗ-04 и ДКС-04. Первый используется для измерения гамма- и рентгеновского излучения в диапазоне энергий 0,03–3,0 МэВ. Шкала прибора проградуирована в микрорентген/секунду (мкР/с). Второй прибор используется для измерения гамма- и бета-излучения в энергетическом диапазоне 0,5– 3,0 МэВ, а также нейтронного излучения (жесткие и тепловые нейтроны). Шкала прибора проградуирована в миллирентгенах в час (мР/ч). Промышленость выпускает также бытовые дозиметры, предназначенные для населения, например, бытовой дозиметр «Мастер-1» (предназначен для измерения дозы гамма-излучения), дозиметр-радиометр бытовой АНРИ-01 («Сосна»).

К средствам индивидуальной защиты от ионизирующих излучений относится спецодежда – халаты, комбинезоны, полукомбинезоны и шапочки, изготовленные из хлопчатобумажной ткани. При значительном загрязнении производственного помещения радиоактивными веществами на спецодежду из ткани дополнительно надевают пленочную одежду (нарукавники, брюки, фартук, халат и т.д.), изготовленную из пластика. Как уже сказано выше, для защиты рук следует использовать просвинцованные резиновые перчатки.

В тех случаях, когда приходится работать в условиях значительного радиационного загрязнения, для защиты персонала используют пневмокостюмы (скафандры) из пластмассовых материалов с поддувом по гибким шлангам воздуха или снабженные кислородным аппаратом. Для поддержания нормальных температурных условий в скафандре расход воздуха должен составлять 150–200 л/мин.

Для защиты органов зрения от излучения применяют очки со стеклами, содержащими специальные добавки (фосфат вольфрама или свинец), а при работе с источниками альфа- и бета-излучений глаза защищают щитками из органического стекла.

Если в воздухе находятся радиоактивные аэрозоли, то надежным средством защиты органов дыхания являются респираторы и противогазы.

Контрольные вопросы

1. Назовите виды ионизирующих излучений и их основные физические характеристики.

2. Назовите основные единицы измерения ионизирующих излучений.

3. Что такое поглощенная, экспозиционная и эквивалентная дозы излучения?

4. Охарактеризуйте биологическое действие ионизирующих излучений на организм человека.

5. Какими документами регламентируются уровни облучений?

6. Каковы способы защиты от ионизирующих излучений?

7. Каковы индивидуальные средства защиты от ионизирующих излучений?

8. Какими приборами измеряют ионизирующие излучения? 17 ..

Различают два вида эффекта воздействия на организм ионизирующих излучений: соматический и генетический. При соматическом эффекте, негативные последствия проявляются непосредственно у облучаемого, при генетическом - у его потомства.

Соматические эффекты могут быть ранними или отдалёнными. Ранние возникают в период от нескольких минут до 60 суток после облучения. К ним относят покраснение и шелушение кожи, помутнение хрусталика глаза, поражение кроветворной системы, лучевая болезнь, летальный исход. Отдалённые соматические эффекты проявляются через несколько месяцев или лет после облучения в виде стойких изменений кожи, злокачественных новообразований, снижения иммунитета, сокращения продолжительности жизни.

При изучении действия излучения на организм были выявлены следующие особенности:

  • 1. Высокая эффективность поглощённой энергии, даже малые её количества могут вызвать глубокие биологические изменения в организме.
  • 2. Наличие скрытого (инкубационного) периода проявления действия ионизирующих излучений.
  • 3. Действие от малых доз может суммироваться или накапливаться.
  • 4. Генетический эффект - воздействие на потомство.
  • 5. Различные органы живого организма имеют свою чувствительность к облучению.
  • 6. Не каждый организм (человек) в целом одинаково реагирует на облучение.
  • 7. Облучение зависит от частоты воздействия. При одной и той же дозе облучения вредные последствия будут тем меньше, чем более дробно оно получено во времени.

Ионизирующее излучение может оказывать влияние на организм как при внешнем (особенно рентгеновское и гамма-излучение), так и при внутреннем (особенно альфа-частицы) облучении. Внутреннее облучение происходит при попадании внутрь организма через лёгкие, кожу и органы пищеварения источников ионизирующего излучения. Внутреннее облучение более опасно, чем внешнее, так как попавшие внутрь источники ИИ подвергают непрерывному облучению ничем не защищённые внутренние органы.

Под действием ионизирующего излучения вода, являющаяся составной частью организма человека, расщепляется, и образуются ионы с разными зарядами. Полученные свободные радикалы и окислители взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая её. Нарушается обмен веществ. Происходят изменения в составе крови - снижается уровень эритроцитов, лейкоцитов, тромбоцитов и нейтрофилов. Поражение органов кроветворения разрушает иммунную систему человека и приводит к инфекционным осложнениям.

Местные поражения характеризуются лучевыми ожогами кожи и слизистых оболочек. При сильных ожогах образуются отёки, пузыри, возможно, отмирание тканей (некрозы).

Смертельные поглощённые дозы для отдельных частей тела следующие:

  • · голова - 20 Гр;
  • · нижняя часть живота - 50 Гр;
  • · грудная клетка - 100 Гр;
  • · конечности - 200 Гр.

При облучении дозами, в 100-1000 раз превышающую смертельную дозу, человек может погибнуть во время однократного облучения (“смерть под лучом”).

Биологические нарушения в зависимости от суммарной поглощённой дозы облучения представлены в таблице 2.

Таблица 2. Биологические нарушения при однократном (до 4-х суток) облучении всего тела человека

Доза облучения, (Гр)

Характер биологических последствий облучения

Видимых нарушений нет

Возможны изменения в крови

Изменения в крови, трудоспособность нарушена

Лёгкая степень лучевой болезни (выздоровление у 100% пострадавших)

Средняя степень лучевой болезни (выздоровление у 100% пострадавших при условии лечения)

Тяжёлая степень лучевой болезни (выздоровление у 50-80% пострадавших при условии специального лечения)

Крайне тяжёлая лучевая болезнь (выздоровление у 30-50% пострадавших при условии специального лечения)

Переходная форма (исход непредсказуем)

100%-ный смертельный исход через несколько суток

Смертельный исход через несколько часов

Смертельный исход через несколько минут

В зависимости от типа ионизирующего излучения могут быть разные меры защиты:

  • · уменьшение времени облучения;
  • · увеличение расстояния до источников ионизирующего излучения;
  • · ограждение или герметизация источников ионизирующего излучения
  • · оборудование и устройство защитных средств;
  • · организация дозиметрического контроля;
  • · применение мер гигиены и санитарии.

А - персонал, т.е. лица, постоянно или временно работающие с источниками ионизирующего излучения;

Б - ограниченная часть населения, т.е. лица, непосредственно не занятые на работе с источниками ионизирующих излучений, но по условиям проживания или размещения рабочих мест могущие подвергаться воздействию ионизирующих излучений;

В - всё население.

Предельно допустимая доза - это наибольшее значение индивидуальной эквивалентной дозы за год, которая при равномерном воздействии в течение 50 лет не вызовет в состоянии здоровья персонала неблагоприятных изменений, обнаруживаемых современными методами.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос до 30 мбэр, почва до 38 мбэр, радиоактивные элементы в тканях человека до 37 мбэр, газ радон до 80 мбэр и другие источники).

Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования порядка 100-150 мбэр, просмотр телевизора около 1-3 мбэр, ТЭЦ на угле до 6 мбэр, последствия испытаний ядерного оружия до 3 мбэр и другие источники).

Всемирной организацией здравоохранения предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.

От альфа-частиц можно защититься путём:

  • 1) увеличения расстояния до источников ионизирующих излучений, т.к. альфа-частицы имеют небольшой пробег;
  • 2) использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
  • 3) исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.

В качестве защиты от бета-частиц используют:

  • 1) ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
  • 2) методы и способы, исключающие попадание источников бета-частиц внутрь организма.

Защиту от рентгеновского и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):

  • 1) увеличение расстояния до источника излучения;
  • 2) сокращение времени пребывания в опасной зоне;
  • 3) экранирование источника излучения материалами с большой плотностью (свинец, бетон и др.);
  • 4) использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
  • 5) использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
  • 6) дозиметрический контроль внешней среды и продуктов питания.

При использовании различного рода защитных сооружений следует учитывать, что мощность экспозиционной дозы ионизирующего излучения снижается в соответствии с величиной коэффициента ослабления (Косл).

Некоторые величины Косл приведены в таблице 3.

Таблица 3. Средние значения коэффициента ослабления дозы радиации

Наименование укрытий и транспортных средств или условия расположения населения (войск)

Открытое расположение на местности

Заражённые траншеи, канавы, окопы, щели

Вновь отрытые траншеи, канавы, окопы, щели

Перекрытые траншеи, канавы, окопы и т.п.

ТРАНСПОРТНЫЕ СРЕДСТВА

Железнодорожные платформы

Автомобили, автобусы и крытые вагоны

Пассажирские вагоны

Бронетранспортёры

ПРОМЫШЛЕННЫЕ И АДМИНИСТРАТИВНЫЕ ЗДАНИЯ

Производственные одноэтажные здания (цехи)

Производственные и административные трёхэтажные здания

ЖИЛЫЕ КАМЕННЫЕ ДОМА

Одноэтажные

Двухэтажные

Трёхэтажные

Пятиэтажные

ЖИЛЫЕ ДЕРЕВЯННЫЕ ДОМА

Одноэтажные


Интенсивность у-излучения, его способность что-либо ионизировать ослабляется как 1/г2, где г - расстояние между у-источником и облучаемым объектом. То есть с удалением от источника радиации опасность подвергнуться его облучению довольно быстро убывает.
Еще в большей мере это относится к источникам (3-излучения, которое не только ослабляется с расстоянием, но и интенсивно поглощается «по дороге». Так, p-излучение даже родия-106 (Ер = 3,54 МэВ) будет полностью поглощено воздушной «подушкой» толщиной 16 м.
Ho особенно резко ослабляется a-излучение. Даже а-частицы полония-216, имеющие энергию Ea = 6,78 МэВ (самые энергичные из попавших в приложение I), будут полностью поглощены 6-сантиметровым слоем воздуха. Хотя в безвоздушном пространстве космоса a-частица может пропутешествовать миллионы лет и покрыть миллионы километров.
Итак, очевидная защита от радиации - удаление от ее источника. Так что один из основополагающих поведенческих рефлексов, рекомендующий человеку (и не только человеку) держаться подальше от чего-то неясного, потенциально опасного, не обманывает его и здесь...
Однако власть, мысляшая иными категориями, относится к такому поведению человека неодобрительно. Ибо нет в нем ни самопожертвования (затыкания амбразур подручными средствами), ни самоотверженного труда (и экономии на его оплате)... А если человек уходил от опасности не только быстро, но и не спрашивая разрешения, то это называлось паническим бегством.
Фольклор не заставил себя ждать: При атомной бомбардировке нужно завернуться в белое и тихо ползти на кладбище... В белое - понятно, на кладбище - тоже... А почему тихо? Чтобы не было паники...
Однако воспользоваться методом «дистанционного» ослабления радиации удается не всегда. В первую очередь это относится, конечно, к профессионалам, вынужденным оставаться на своих рабочих местах. И тогда остается лишь одно - установить между человеком и источником радиации защитный экран.

И здесь основная проблема - защита от у-излучения. И хотя полностью оно не поглощается ничем, его интенсивность может быть снижена до приемлемой величины защитным экраном, изготовленным из подходящего матер пат а и имеющего достаточную толщину. В приложении 7 приведены таблицы (П7.1-П7.3), в которых связаны жесткость у-излучения, кратность его ослабления и нужная для такого ослабления толщина экрана .
В отличие от у-, p-излучение может быть полностью поглощено в слое вещества достаточной толщины. В приложении 7 (табл. П7.4, П7.5) приведены величины максимального пробега электронов с энергией Ep в воде, в воздухе, в биологической ткани и в некоторых металлах.
Лишь у немногих р-излучающих радионуклидов, вошедших в приложение I, энергия излучения превышает 3 МэВ (самые энер- гичные электроны излучает родий-106: Ep тах = 3,54 МэВ). А это значит, что практически 100%-ную защиту от p-излучения радионуклидов, с которыми мы можем встретиться, обеспечит железный лист толщиной 3...3,5 мм.
Такой экран может быть полезен и в другом качестве - при экспресс-анализе обнаруженного. Так, если показания прикрытого им дозиметра уменьшаются до обычных фоновых, то это значит, что мы, скорее всего, имеем дело с каким-то из р-излучателей. А излучение стронций-иттриевого источника (Epmax =2,27 МэВ), самого массового из «чистых» р-излучателей, будет «отрезано» листом железа толщиной лишь 2 мм.
Поглотителем p-излучения и своего рода экраном, защищающим внутренние органы человека, может быть и сама биологическая ткань: следствием мощного электронного облучения бывает обычно лишь ожог кожи и подкожных тканей. Если это «свежевыпавший» стронций-90, то ожог будет поверхностным (глубина 15...0,2 мм), если уже полежавший (и накопивший иттрий-90), ожог затронет ткани на глубину до 5... 10 мм.
Конечно, при определении толщины экрана, полностью поглощающего электронное излучение, ориентируются на Ep тах - самые энергичные электроны спектра".
1 В p-спектре радионуклида принято отмечать Ep ср - среднюю энергию р-час- тиц - и Ep тgt;,х - их максимальную энергию. Обычно Ep ma*/Ep Ср = 2,5...4. Ho это отношение может быть и значительно большим. Так, для кобальта-60 Ep тах/ЕРср= 16, а для европия-158 - Ep max/Epcps44 :
«...Другой группе летчиков предполагалось назначить бывший на снабжении MO СССР табельный препарат противорадиационной защиты - цистамин. Тем не менее от этой акции военные медики вскоре отказались, так как после приема цистамина у летчиков возникала тошнота и рвота - характерные для большинства радиопротекторов осложнения...»
И еще об одном «радиопротекторе»...
...Говорят, что «Столичная» очень хороша от стронция... Этот невеселый юмор Галича возник не на пустом месте. Вот что пишут по этому поводу командиры наших атомных подводных лодок : Основным лекарством считалось (и считается до сих пор) спиртное. Утверждалось, что 150 граммов водки после работы снимает всю полученную радиацию и улучшает обмен веществ.
И там же: При серьезных авариях сварщик из заключенных знал, что дозу он получит огромную. Он имел право отказаться - и отказывался. Убедить его можно было только таким аргументом: «Получишь стакан спирта! Половину - до начала работы и половину - после».
Ho спиртом «лечились» от радиации не только на флоте: Мне привозили контейнеры с радиоактивными изотопами... сотрудники Министерства госбезопасности. Им нравилась эта работа потому, что к этому времени распространилось мнение, воплощенное в служебную инструкцию, что против излучения помогает спирт. Им полагалась бутылка водки на двоих... (Шноль С.Э. Герои, злодеи, конформисты российской науки. - 2-е изд. М.: Крон-пресс. 2001. С. 592).
...Методы «работы с населением» могут быть самыми разными. Ho описанный может быть отнесен к самым эффективным в России: пить не только можно, но и нужно, и притом за казенный счет... Это вершина творчества атомного Агитпропа...
Хотя способность стакана водки ликвидировать последствия ионизирующего облучения любого уровня, то есть независимость спиртовой дозы от радиационной, должна была бы вызывать сомнения. Ho, похоже, зависимость все же есть...
А. Яковлев в своей книге (Омут памяти. Вагриус. М.: 2000. С. 254), касаясь обсуждения на Политбюро событий в Чернобыле, воспроизводит разговор между президентом АН СССР А.П. Александровом и министром Средмаша Е.П. Славским: Ты помнишь, Ефим, сколько рентген мы с тобой схватили на Новой Земле? И вот ничего, живем. Помню, конечно. Ho мы тогда по литру водки оприходовали...

Все живое на этой планете постоянно подвергается воздействию небольшого количества ионизирующего излучения из нескольких источников (космические лучи из космоса, радон из почвы и радиоактивные материалы природного происхождения).

В чем же проявляется опасность ионизирующего излучения?

Такое излучение вызывает изменения в химическом балансе клеток. Некоторые из этих изменений может привести к раку. Кроме того, повреждая генетический материал (ДНК) ионизирующее излучение может вызвать вредные генетические мутации, которые могут быть переданы будущим поколениям.

Воздействие больших количеств радиации, может вызвать болезнь (за несколько часов или дней) и смерти (где-то шестьдесят дней после контакта, но в редких случаях смерть может наступить раньше).

Воздействие на человека

Как оно влияет на человека, зависит от размера дозы облучения. Ученые изучают последствия ионизирующего излучения на лабораторных животных уже много лет. Исследования показали, что низкие дозы ионизирующего излучения которым мы подвергаемся каждый день не вызывает никакого вреда нашему организму.

Но воздействие огромного количества ионизирующего излучения может причинить большой вред. Длительное воздействие в высоких количествах ионизирующего излучения может приводить к эффектам, таким как ожоги кожи, выпадение волос, врожденных дефектов, раку и даже смерти. Доза определяет, будет ли видно эффект и ступень его тяжести.

Способы защиты от ионизирующих излучений

Невозможно защитить людей от источников фонового излучения, распределенных по окружающей среде. Однако когда источник излучения концентрирован и заключен в небольшой области влияние его может быть ограничено использованием тщательно спланированных структур и процедур.

Три фактора, которые определяют размер полученной дозы облучения: время, расстояние и экранирование.

1.Время. Чем короче время, проведенное рядом с источником, тем меньшая доза излучения. Процедуры по радиационной защите призваны сократить время, которое люди тратят около источника излучения.

2.Расстояние. Кроме того, доза радиации человек получает, зависит и от того, как близко человек к источнику. Чем больше расстояние между человеком и источником излучения, тем меньше доза.

3. Экранирование. Лучший способ защиты от ионизирующего излучения. Чтобы обеспечить защиту необходимо положить некоторый материал (экран) между источником излучения и людьми. Когда излучение попадает на экранирование, он начинает создавать ионы в щит. Каждый раз, когда создается ион, излучение использует часть своей энергии. Чем толще щит, тем лучшая защита. Любой материал обеспечивает некоторую защиту. Общие защитные материалы являются сталь, бетон, свинец, и др.

В связи с тем, что проникающее излучение оказывает вредное биологическое действие, первостепенное значение при работе с радиоактивными веществами приобретает правильная организация труда , обеспечивающая безопасность обслуживающего персонала. Правильно организовать работу с радиоактивными веществами значит создать условия, исключающие превышение пределов доз облучения и предупреждение проникновения радиоактивных веществ внутрь организма. Сюда входит целый комплекс мероприятий, обеспечивающих защиту от внешнего облучения, а также позволяющих предотвратить загрязненность радиоактивными источниками рабочих помещений, рук и тела работающих, осуществить контроль за уровнем радиоактивных излучений.

Условия безопасности при использовании радиоактивных изотопов требуют соблюдения мер защиты не только в отношении людей, непосредственно работающих с радиоактивными веществами или находящихся в смежных помещениях, но также и населения, проживающего недалеко от предприятия, которое может подвергаться радиоактивному облучению. Безопасность работающих с источниками ионизирующих излучений обеспечивается установлением предельно допустимых доз облучения, применением защиты временем и расстоянием, использованием технических и индивидуальных средств защиты.

Нормирование параметров и организационные меры защиты . Нормы радиационной безопасности установлены в СанПиН 2.6.1.2523-09 "Нормы радиационной безопасности (НРБ-99/2009)" . Нормы применяются для обеспечения безопасности человека во всех условиях воздействия на него ионизирующего излучения искусственного или природного происхождения. НРБ-99/2009 устанавливают следующие категории облучаемых лиц :

  • – персонал (группы А и Б);
  • – все население, включая лиц из персонала вне сферы и условий их производственной деятельности.

Группу А составляют лица, работающие с техногенными источниками излучения. В группу Б входят лица, работающие на радиационном объекте или на территории его санитарно-защитной зоны и находящиеся в сфере воздействия техногенных источников. Основные пределы доз и все остальные допустимые производные уровни для персонала группы Б не должны превышать одной четвертой значений для персонала группы А.

  • 1) основные пределы доз (ПД), которые приведены в табл. 5.4;
  • 2) допустимые уровни монофакторного воздействия (для одного радионуклида, пути поступления или одного вида внешнего облучения), являющиеся производными от основных пределов доз, – пределы годового поступления (ПГП), допустимые среднегодовые объемные активности (ДОА), среднегодовые удельные активности (ДУА) и др.

Для обеспечения условий, при которых радиационное воздействие будет ниже допустимого, с учетом достигнутого в организации уровня радиационной безопасности администрацией организации дополнительно устанавливаются контрольные уровни (дозы, уровни активности, плотности потоков и др.).

Основные пределы доз облучения не включают в себя дозы от природного и медицинского облучения, а также дозы вследствие радиационных аварий. На эти виды облучения устанавливаются специальные ограничения.

Эффективная доза для персонала не должна превышать за период трудовой деятельности (50 лет) – 1000 мЗв, для населения за период жизни (70 лет) – 70 мЗв. Началом периодов считается 1 января 2000 г. 1

Годовая эффективная доза облучения персонала за счет нормальной эксплуатации техногенных источников ионизирующего излучения не должна превышать пределов доз, установленных в табл. 5.4. Под годовой эффективной дозой понимается сумма эффективной дозы внешнего облучения, полученной за календарный год, и ожидаемой эффективной дозы внутреннего облучения, обусловленной поступлением в организм радионуклидов за этот же год.

Таблица 5.4

Основные пределы доз

При организации работ с источниками малой мощности распространенными способами являются защита временем и защита расстоянием. Защита временем предусматривает такой регламент работ, при котором доза, полученная за время проведения работ, не превысит предельно допустимую. Защита расстоянием означает, что все операции с источниками излучения следует проводить при помощи манипуляторов, а весь процесс работы – в возможно короткий срок, в течение которого доза, полученная работающим, будет наименьшей и не превысит пределов, установленных санитарными нормами и правилами.

При работе с источниками большой активности для защиты работающих необходимы специальные экраны , в десятки и сотни раз ослабляющие интенсивность излучения. Например, для защитных экранов, поглощающих гамма- излучение , используются материалы, содержащие элементы с высоким атомным номером и высокой плотностью (например, свинец); пригодны по своим защитным свойствам также вода, сталь, чугун, бетон, баритобетон. Определение необходимой толщины экрана может быть произведено расчетным путем по справочным данным и по номограммам, приведенным в специальной литературе.

Защита от нейтронов. Обладая огромной проникающей способностью, быстрые нейтроны слабо поглощаются веществом, поэтому задача защиты от нейтронов заключается в замедлении движения быстрых нейтронов с последующим поглощением замедленных нейтронов. Известно, что быстрый нейтрон теряет приблизительно две трети своей энергии при столкновении с атомом водорода, вследствие этого хорошим защитным материалом от нейтронов являются вода и водородосодержащие материалы (парафин). Большое сечение захвата медленных нейтронов имеет бериллий. Нейтроны малой энергии (тепловые) хорошо поглощаются бором и кадмием, поэтому бор в чистом виде или в виде соединений вводится в бетон, свинец и другие материалы, применяемые для защиты от нейтронов и гамма-излучения, которое сопровождает поглощение нейтронов такими материалами, как бериллий, бор и кадмий.

Технические меры защиты. К техническим мерам защиты от ионизирующих излучений относятся автоматизация и дистанционное управление, герметизация источников, защитное экранирование. При выборе технических средств защиты необходимо учитывать условия облучения (внешнее или внутреннее). При работе с радиоактивными веществами в открытом виде наряду с опасностью внешнего облучения имеется возможность поступления этих веществ внутрь организма. Для защиты персонала используется радиационно-защитное технологическое оборудование (камеры, боксы, вытяжные шкафы), а также сейфы, контейнеры и мешки для радиоактивных отходов. Герметичность вытяжных устройств – шкафов, боксов и камер обеспечивается созданием разрежения воздуха (100–200 Па).

Радиохимический шкаф более герметичен, чем обычный химический, рабочие отверстия закрыты перчатками, скорость воздуха в открывающихся проемах (в зависимости от класса работ) составляет 1–1,5 м/с. Боксы – герметичные укрытия, применяемые для проведения операций с радиоизотопами в открытом виде. Для проведения операций в заданных газовых средах (например, восстановления металлов в инертных средах) применяют боксы с замкнутой циркуляцией воздуха . Такие боксы имеют собственную вентиляционную систему, обеспечивающую очистку в индивидуальном фильтре бокса загрязненного радиоактивными аэрозолями воздуха (или другого газа) и подачу очищенного воздуха в бокс. В вытяжных шкафах и боксах используют манипуляторы копирующие, шпатовые и другой дистанционный инструмент, приспособления для вскрытия пеналов, запайки ампул и др. Кроме того, манипуляторные боксы снабжены контейнерами для твердых отходов, тележками для подачи контейнеров, блоком сварки пластиковых мешков. Для вакуумной плавки и литья радиоактивных металлов применяют дистанционно управляемую установку, которая размещается в герметичном боксе, оборудованном автоматическими транспортными коммуникациями.

Для работ с веществами высоких уровней активности используют камеры , полностью герметизированные, с дистанционным управлением рабочими операциями и наблюдением через защищенные отверстия. Работы с веществами большой активности выполняются на полностью автоматизированном оборудовании с дистанционным управлением.

Защита от внешнего облучения предусматривает создание таких ограждений (экранов) , которые снижали бы дозу внешнего облучения до предельно допустимой. Выбор типа ограждения или экрана прежде всего зависит от вида излучения, а также от активности и энергии источника излучения, условий его эксплуатации. Стационарными ограждениями служат защитные стены, перекрытия пола и потолка, смотровые окна; экранами – стенки контейнеров для перевозки радиоактивных изотопов, сейфов для их хранения, боксов и др.

При выборе материала экрана (ограждения) во внимание принимаются спектральный состав излучения, его интенсивность, а также расстояние от источника, на котором находится обслуживающий персонал, и время пребывания под действием излучений. Например, для защиты от альфа-излучения достаточен слой воздуха в 10 см от источника, так как пробег альфа-частиц в воздухе не превышает 8–9 см. Применяют также экраны из плексигласа или стекла толщиной в несколько миллиметров. Практически при работе с альфа-активными препаратами приходится защищаться не только от альфа-, но и от бета- или гамма- излучения.

Экраны для защиты от бета-излучения изготовляют из материалов с малой атомной массой (например, алюминия) или из плексигласа. Толщину экрана определяют с учетом максимального пробега бета-частиц (для алюминия при энергии бета-частиц Е = 0,1:0,6 МэВ пробег l = 0,07:1 мм). Но при прохождении бета-частиц через вещество не только ионизируются атомы, но и возникает тормозное излучение, поэтому для защиты от бета-излучений высоких энергий экран снаружи покрывают слоем тяжелого материала (например, свинца) для поглощения тормозного излучения. Возникающие в материале внутреннего слоя экрана кванты с малой энергией поглощаются внешним слоем материала с большой атомной массой. Толщину наружного слоя определяют по рассчитанному значению энергии тормозного излучения и создаваемой им дозе излучения.

Сложнее осуществить защиту от внешнего гамма- излучения , проникающая способность которого гораздо выше, чем у альфа- и бета-частиц. Обеспечить полную защиту от гамма-излучения не представляется возможным. Защитные устройства позволяют только снизить величину дозы этого излучения в любое число раз. Материалы защитных устройств – вещества с большой атомной массой и высокой плотностью: свинец, вольфрам и т.п. Часто используют более легкие материалы, но менее дефицитные и более дешевые: сталь, чугун, сплавы меди. Стационарные ограждения, являющиеся частью строительных конструкций, целесообразнее изготовлять из бетона и баритобетона. Смотровые системы изготовляют из специального стекла: свинцового с жидким наполнителем (бромидом и хлоридом цинка) и др. В качестве защищающего от гамма-лучей материала применяют и свинцовую резину.

Защиту от гамма-излучения можно осуществить также временем, расстоянием, количеством радиоактивного вещества. Для обеспечения условий безопасности доза облучения не должна превышать ПДД (5 бэр в год).

Сложность создания защиты от нейтронного излучения состоит в том, что нейтроны вследствие отсутствия заряда не взаимодействуют с электрическим полем и поэтому распространяются в веществе, пока не столкнутся с ядрами. Таким образом, поглощение веществом нейтронного излучения проходит в два этапа: вначале быстрые нейтроны в результате упругих столкновений с ядрами рассеиваются, энергия нейтронов уменьшается до тепловой, а затем тепловые нейтроны при неупругих взаимодействиях поглощаются средой. Максимальное рассеивание происходит при упругих столкновениях частиц равной массы – для нейтронов это ядра водорода.

Для защиты от нейтронного излучения применяют воду, парафин, а также графит, бериллий и др. Нейтроны малой энергии поглощаются бором и кадмием, поэтому в применяемый для защиты от нейтронов бетон добавляют соединения бора: буру, колеманит. При поглощении нейтронов происходит испускание гамма-квантов. Для комбинированной защиты от нейтронов и гамма-излучения используют смеси тяжелых материалов с водой или водородсодержащими материалами, а также комбинации слоев тяжелых и легких материалов: железо – вода, свинец – вода, свинец – полиэтилен и т.п. Толщина экрана определяется по таблицам, номограммам или расчетам.

Средства индивидуальной защиты предназначены для защиты от внутреннего облучения радиоактивными веществами, а также – при внешнем облучении – от альфа- и мягкого бета-излучений (от гамма- и нейтронного излучений они не защищают). Индивидуальные средства защиты включают спецодежду, средства защиты органов дыхания и зрения.

При работах I класса и отдельных работах II класса работники обеспечиваются комбинезонами или костюмами, шапочками, легкой пленочной обувью или специальными ботинками, перчатками, бумажными полотенцами или носовыми платками разового пользования, а также средствами защиты органов дыхания. При работах II и III классов работники снабжаются халатами, шапочками, легкой обувью, перчатками, а при необходимости – средствами защиты органов дыхания.

Для выполнения ремонтных работ, при которых загрязнения могут быть очень большими, разработаны пневмо-костюмы из пластических материалов с принудительной подачей воздуха под костюм. Пневмокостюм защищает основную спецодежду, органы дыхания и кожные покровы от радиоактивной пыли. Вследствие полной герметичности костюм можно дезактивировать на работающем после его выхода из загрязненной зоны.

Органы дыхания при работе с изотопами защищают посредством респираторов, пневмошлемов, противогазов. Наиболее надежен шланговый противогаз.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими свинец или фосфат вольфрама. При работах с источниками альфа- и бета-излучений для защиты лица и глаз используют защитные щитки из оргстекла.

Безопасность работы с радиоактивными веществами и источниками излучения можно обеспечить, организуя систематический дозиметрический контроль за уровнями внешнего и внутреннего облучения персонала, а также за уровнем радиации в окружающей среде (воздухе, воде и др.). Объем дозиметрического контроля зависит от характера работы с радиоактивными веществами. При работе с закрытыми источниками достаточно измерять дозы гамма-излучения на рабочих местах постоянного и временного пребывания персонала.

Осуществление работ с открытыми источниками требует кроме измерения уровней потоков излучения проведения контроля уровней загрязненности воздуха и рабочих поверхностей радиоактивными веществами, а также контроля уровней загрязненности рук и одежды работающих. Персонал, контактирующий с радиоактивными веществами, должен иметь индивидуальные дозиметры для контроля гамма-излучения.

  • Утверждены постановлением Главного государственного санитарного врача РФ от 7 июля 2009 г. № 47.


© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация