Противогаз от радиации. Проведение мероприятий по ограничению воздействия радиоактивного потока. Может ли человек быть источником радиации

Главная / Суд

Возможность гибели населения от радиации в наши дни считается не высокой, многие "эксперты" утверждают, что применение ядерного оружия является маловероятной, другие считают, что применение ядерных средств массового поражения сотрут человечество с лица все двадцать раз. На эту можно долго спорить и рассуждать, пока человечество не опробует ядерное оружие в ходевооруженных конфликтов (не хотелось бы). Мне, например, видится не лишенный смысла сценарийприменения точечных маломощных ядерных ударов. Также всегда имеет место быть опасность (пусть и не высокой) аварии на ядерных объектах,по типу Чернобыля. Также хочется заметить, что способы, средства и принципы защиты от радиации вам реально помогут,если вы находитесь на определенном расстоянии от эпицентра взрыва, иначе как в анекдоте про радиацию, что нужно накрыться белой простыней и тихо ползти на кладбище, т.е. находясь в самом эпицентре, наврятли получится выжить.

Для непосредственного понимания способов и принципов защиты от радиации , необходимо знать, как происходит сам ядерный взрыв. В момент ядерного взрыва в эпицентре происходит выделение огромного количества энергии, сопровождаемой увеличением температуры до миллионов градусов и резкого повышения давления, за счет чего образуется световая,тепловая, взрывная волна,и проникающая радиация.

Составляющие ядерного взрыва:

Световое и тепловое излучение . Ядерный взрыв сопровождается мощной ослепительной вспышкой света, длящейся несколько секунд,и способной на расстоянии нескольких километров вызвать ожоги и пожары. Особенно важно в этот момент защитить глаза.

Ударная волна . Вслед за световым излучением последует взрывная волна, сметающая все на своем пути. Для примера: расстояние в 18 км ударная волнапреодолеет за 35 сек., что позволит найти ближайшее укрытие, если ядерный взрыв вы встречаете не в убежище (прямо как Новый Год). Взрыв зарядамощностью 5 Мт накроет ударной волной расстояние до 30 км. Взрыв мощностью 20 Мт увеличит дальность поражения ударной волной до 40-50 км.

Проникающая радиация . В момент взрыва образуется мощное ионизирующее излучение, называемое первичной радиациией, обладающей высокой проникающей способностью, это гамма- и нейтронное излучение.Расстояние, на котором оно может причинить вред не превышает расстояние взрывной волны. После взрыва первичная радиации идет на убыль.

Вторичная радиация . Если вы пережили непосредственно сам взрыв, и находитесь на определенном расстоянии - это не повод расслабиться. Теперь ваш главный враг - вторичная радиация в виде радиоактивных осадков, которые могут распространиться на большие расстояние. На площадь загрязнения радиоактивными осадками влияет вид ядерного взрыва, мощность и направление и сила ветра. При наземном взрыве на высоту 10-20 км поднимается в виде гриба, огромное количество пыли с радиоктивными частицами. Наиболее крупные частицы выпадают в течении первых 30-40 минут, но более мелкие частицы остаются в облаке. При чем, чем сильнее по мощности происходит взрыв, тем меньше по размеру образуются частицы, и,соответственно, их больше переносится ветром. Поэтому наземный взрыв более опасен из-за своей вторичной радиации. После взрыва решающее значение играет направление ветра. Усложняет прогнозирование различное направление ветра на разных высотах.
Зона поражения при небольших изменениях ветра на 10-20°
Зона поражения при сильных изменениях ветра
Зона поражения при изменении ветра на 180°

Атмосферные осадки в виде дождя и снега также могут влиять на выпадение радиоактивных осадков. Также стоит заметить, что при небольших изменениях ветра зона поражения, как на первом рисунке, будет в ширину несколько десятков километров, при этом первые радиоактивные осадки свыпадут на землю не раньше 0,5 - 1 ч, с учетов времени переноса и выпадения. За это время, если вы находитесь по ветру от эпицентра взрыва и зная картину распространения,теоретически можно эвакуироваться в перпендикулярном ветру направлении в более безопасное место. При массированном ударе, либо, применении ракет с разделяющимися боеговоловками, зоны поражения могут накладываться друг на друга.

Защита от радиации

При защите от радиации следует учитывать 4 фактора: время, прошедшее с момента взрыва, длительность облучения, расстояние до источника радиации, экранирование от радиационного облучения.

Время Уровень излучения радиоактивных осадков сильно зависит от времени, прошедшего с момента взрыва. Это обуславливается периодом полураспада, из чего следует, что в первые часы и дни уровень излучения падает довольно сильно, за счет распада короткоживущих изотопов, составляющих основную массу радиоактивных осадков. Далее уровень радиации падает очень медленно за счет частиц с больши периодом полураспада. Для оценки времени применимо грубое правило семь/десять - каждое семикратное увеличение времени уменьшает уровень радиоактивного излучения в десять раз.

Данное правило позволяет лишь грубо оценить время снижения уровня радиоактивного излучения при условии единичного ядерного взрыва.

Расстояние до источника радиации. Здесь действует правило два-четыре , т.е с увеличением расстояния в два раза, уровень радиации падает в четыре раза.

Экранирование . Уровень радиациооного излучения ослабляют тяжелые материалы, выступающие в роли экрана между вами и радиацией. Так на 99% радиационного излучения задерживают:

  • 40 см кирпича
  • 60 см плотного грунта
  • 90 см рыхлого грунта
  • 13 см стали
  • 8 см свинца
  • 100 воды

Еще раз повторим, что от радиации спасаются временем и расстоянием. На основании выше сказанного, наличие правильного убежища повышает шансы на выживание вас и вашей семьи. Теперь, когда мы рассмотрели основные факторы ядерного взрыва и основных принципов защиты от радиации,рассмотрим более конкретные ситуации.

Если ситуация вас застала врасплох, и вы находитесь в городе, то все же можно побороться за свое выживание. Правда выживание в крупных мегаполисах, вроде Москвы, оставляет мало шансов, поскольку наверняка по таким крупным центрам будет нанесен удар. Метро, вопреки одному известному постядерному рассказу, также наверное не стоит рассматривать в качестве укрытия от радиации, поскольку такое сложное сооружение должно вентилироваться, питаться электричеством, хоть где-то я и читал, что есть аварийные дизельные генераторы, которых должно хватит на освещение и вентиляцию, но не факт, что сейчас все это поддерживается в должном состоянии. Оно находится в крупных городах. Больше подходит для братской могилы, ведь выживание в таких крупных городах, где есть метро, мало возможно, поскольку именно по ним придутся удары.

Если вы находитесь в городской квартире и предупреждены о возможном ударе, нет времени и места для эвакуации, тонеобходимо выполнить ряд приготовлений. По возможности выбрать комнату без окон, либо защититься от осколков вылетающих окон, которые может выбить ударная волна. Для этого необходимо скотчем заклеить стекла, закрыть жалюзи, если есть. Также необходимо заклеить все щели для защиты от проникновения радиоактивных осадков, это на случай, если вы находитесь на достаточном расстоянии от места взрыва и окна уцелеют. Далее необходимо приготовится к возможным пожарам. Необходим запас воды и пищи минимум на две недели, необходимое снаряжение для выживанаия, одежда и обувь. Все сложить в том помещении, где вы разместились. При этом надо обратить внимание, чтобы на вас не упали предметы мебели, вроде шкафа. Перед взрывом надо защитить органы дыхания , надев противогаз, респиратор, маску. Манжеты на одежде и штанины плотно застегнуть и обмотать скотчем. На ноги одеть чулки от ОЗК, либо мусорные пакеты и также плотно замотать.

В момент взрыва вы должны быть максимально защищены от светового, теплового, проникающего излучения и ударной волны. Если вам удалось пережить удар, то теперь придется бороться с вторичной радиации. Первое время вам необходимо оставаться в убежище, пока уровень радиации не спадет до приемлимых значений. Помимо экранирующих и изолирующих от радиоактивных осадков, ваше убежище должно нормально вентилироваться из-за скопления углекислого газа. После падения уровня радиации (несколько дней или недель) можно выбраться наружу на непродолжительное время, замерить радиационный фон, если есть дозиметр,вынести продукты жизнедеятельности, оценить обстановку и принять решение - оставаться, либо перебираться в другое, более безопасное место. Необходимо строго следить за тем, чтобы в убежище не попадала радиоактивная пыль и грязь с одеждой, обувью, через вентиляцию. Выходить наружу также нужно максимально защитив кожу, органы дыхания. После выхода, одежду лучше оставлять снаружи, либо в своебразном предбаннике.

Защита от радиации пищи, воды и воздуха

Для начала развеем мифы, о том что радиация в чистом виде может заразить воздух, воду, пищу. Если в убежище у вас стоял плотно закрытый бидон с водой,то вода даже под воздействием сильной радиации не станет радиоактивной. Это произойдет, если в воду попадут радиоактивные частицы. Также это относится к воздуху и воде. Поэтому первостепенной задачей является защита от вторичной радиации пищи и воды. Воду хранить в герметичных емкостях.Продукты упаковывать в целофан. Поскольку даже тонкий полиэтилен способен защить продукты от проинкновения радиоактивных частиц. Продукты в паковке и натуральной оболочке можно мыть, тем самым удаляя радиоактивную пыль. Вторичная радиация опасна впервую очередь, тем, что радиоактивные частицы могут попасть в организм с пищей, водой,вдыхаемым воздухом. Попав внутрь, частицы в зависимости от типа химического элемента всасываются в различные органыпродолжая облучать организм изнутри. Например радиоактивный йод-131 накапливается в щитовидной железе.

При выходе на поверхность следует учитывать расстояние до радиоактивных осадков, осевших на поверхности земли - у самой земли фон будет в разы выше,чем на высоте 0,7 - 1 м (примерно на такой высоте располагаются наши внутренние органы). Поэтому детей лучше переносить на плечах, посколькуиз-за не высокого роста, гуляя самостоятельно по земле, они получат большую дозу, чем взрослые.

При поступлении информации о повышении уровня радиации можно принимать йодистый калий в течении 7 дней по одной таблетке (0,125 г), а для детей до 2 лет - 1/4 часть та блетки (0,04 г). Если йодистого калия нет, можно использовать йодистый раствор из расчета 3-5 капель 5%-ного раствора йода на стакан воды, детям до 2 лет - одну-две капли. При применении обязательно ознакомьтесь с инструкцией к препарату!!! По непроверенной информации этот метод защиты не так уж и безвреден для организма!!!

P.S. Статья будет дополняться и редактироваться

Похожие материалы:


Комментарии

2 #41 Кирилл 18.05.2015 21:11

Цитирую Kosoy:

Цитирую Светлана:

Люди, да как можно спастись от радиации??? Можно тоько ненадолго продлить себе жизнь и все.Радиация уже попала в источники воды.Со временем попадет в океан и мы все равно все вымрем в конечном счете. Это только вопрос времени.

Светлана, я вас расстрою, наверное - мы все умрём... Рано или поздно, но все.

По теме: боитесь радиации - заклейте окна, купите таблеток йодистого калия, принимайте по 50 грамм красного сухого ежедневно (для тонуса)). Опасаетесь радиоактивной пыли//осадков - ОЗК Л-1 к вашим услугам. Ищите в магазинах спец одежды, цена от 150 р. Респираторы противопылевые РПГ-67, цена 250р. И уже радиоактивных частиц не нахватаетесь.

В большинстве случаев людей губит не гибель, а страх гибели. Паника.

PS: Я искренне сочувствую нашему Дальнему Востоку. Живу в районе, пострадавшем от ЧАЭС. Единственное проявление - высокий уровень онкологических заболеваний. Таки да, мы все умрём.

Да чё тупить то: покупаем радиационный костюм такой же, как в Полярных Зорях(это из серии Метро).
Стоит такой костюм дороговато. От 200т.

Вследствие этого человечество, несмотря на малую изученность данной проблемы, активно занимается разработкой средств и мер защиты организмов от радиации. Так, например, для защиты от воздуха, заражённого радиоактивными частицами можно применять противогазы и респираторы (для шахтёров). Также есть общие методы зажиты такие как:

увеличение расстояния между оператором и источником;

сокращение продолжительности работы в поле излучения;

дистанционное управление;

использование манипуляторов и роботов;

полная автоматизация технологического процесса;

использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

постоянный контроль над уровнем излучения и за дозами облучения персонала.

Ионизирующее излучение: понятие радиации, радиоактивности.

Радиация в переводе с латинского "сияние", "излучение" – процесс распространения потока элементарных частиц и квантов электромагнитного излучения. Радиация вторгается в молекулы и атомы любого вещества повстречавшегося на её пути, вызывает возбуждение атомов и появление ионов (ионизацию), отсюда произошло другое название ионизирующее излучение.

Радиация – это естественный фактор окружающей среды, существовавший задолго до появления человечества и существующий на всём протяжении его развития (есть, даже теории что радиации принадлежит не последняя роль в появлении жизни на Земле).

Все виды радиации опасны?

В общем смысле под определение радиации подпадает любой вид излучения: инфракрасное (тепловое), ультрафиолетовое (солнечная радиация), видимое световое излучение, но только один вид – ионизирующее излучение несёт серьёзную опасность, вторгаясь в любую материю на своём пути, ионизируя и тем самым разрушая её. Ионизирующее излучение не ведает преград, ни бетон, ни железо, ни другой материал не могут сдержать его распространение. Ионизирующее излучение возникает в результате радиоактивного распада ядер некоторых элементов и, в зависимости от частиц его составляющих, подразделяется на два вида: коротковолновое электромагнитное излучение (рентгеновские лучи, гамма-излучение) и корпускулярное излучение, представляющее собой потоки частиц (альфа-частиц, бета-частиц (электронов), нейтронов, протонов, тяжелых ионов и других). Наибольшее распространение имеют: альфа, бета, гамма и рентгеновское излучение.

Виды Ионизирующего излучения

Альфа частицы, представляют собой часть атома, состоящую из 2-ух протонов и 2-ух нейтронов, имеющую положительный заряд и обладающую большой энергией (и разрушительной силой), но довольно громоздки и потому легко уловимы (даже плотная одежда или лист бумаги является для них преградой, при попадании на кожу частицы застревают в ней). Опасно лишь попадание альфа-частиц с пищей, но и этого стоит остерегаться.

Бета-излучение – это поток мельчайших заряженных частиц (электронов), имеет большую проникающую способность, для защиты от этого вида радиации, понадобится более толстая защита: лист алюминия толщиной в несколько мм, дерево в несколько см и т.д.

Гамма-излучение и близкое к нему по свойствам рентгеновское излучение, обладает наибольшей проникающей способностью – это высокоэнергетическое коротковолновое электромагнитное излучение, представляющее собой поток фотонов, имеет нулевой заряд и поэтому не отклоняется при воздействии магнитным полем. Для защиты от такого вида излучения понадобится толстый слой материала с тяжёлыми ядрами (свинец, обеднённый уран, вольфрам). Есть ряд веществ (бор, графит, кадмий), которые способны нейтрализовать гамма-излучение.

Лазерное излучение воздействие Непосредственно на человека оказывает лазерное излучение любой длины волны; однако в связи со спектральными особенностями поражения органов и существенно различными предельно допустимыми дозами облучения обычно различают воздействие на глаза и кожные покровы человека.

Можно выделить два направления применения лазеров и отрасли.

Первое направление связано с целенаправленным воздействием на обрабатываемое вещество (микросварка, термообработка, резка хрупких и твердых материалов, подгонка параметров микросхем и др.), второе направление -медицина - находит все большее развитие.ых приборов связано с определенной опасностью для человека

. Лазерное излучение характеризуется некоторыми особеннос­тями:

1 - широкий спектральный (&=0.2..1 мкм) и динамический (120..200 дБ);

2 - малая длительность импульсов (до 0.1 нс.);

3 - высокая плотность мощности (до 1e+9 Вт/см^2) энергии;

4 - Измерение энергетических параметров и характеристик лазерного излучения

Наиболее опасно лазерное излучение с длиной волны :

380¸1400 нм - для сетчатки глаза,

180¸380 нм и свыше 1400 нм - для передних сред глаза,

180¸105 нм (т.е. во всем рассматриваемом диапазоне) - для кожи.

Основную опасность при эксплуатации лазера представляет прямое лазерное излучение.

Степень потенциальной опасности лазерного излучения зависит от мощности источника, длины волны, длительности импульса и чистоты его следования, окружающих условий, отражения и рассеяния излучения.

Биологические эффекты, возникающие при воздействии лазерного излучения на организм человека, делятся на две группы:

Первичные эффекты - органические изменения, возникающие непосредственно в облучаемых тканях;

Вторичные эффекты - неспецифические изменения, появляющиеся в организме в ответ на облучение.

Наиболее подвержен поражению лазерным излучениям глаз человека. Сфокусированный на сетчатке хрусталиком глаза лазерный луч будет иметь вид малого пятна с еще более плотной концентрацией энергии, чем падающее на глаз излучение. Поэтому попадание лазерного излучения в глаз опасно и может вызвать повреждение сетчатой и сосудистой оболочек с нарушением зрения. При малых плотностях энергии происходит кровоизлияние, а при больших - ожег, разрыв сетчатой оболочки, появление пузырьков глаза в стекловидном теле.

Лазерное излучение может вызвать также повреждение кожи и внутренних органов человека. Повреждение кожи лазерным излучением схоже с термическим ожогом. На степень повреждения влияют как входные характеристики лазеров, так и цвет, и степень пигментации кожи. Интенсивность излучения, которая вызывает повреждение кожи, намного выше интенсивности, приводящей к повреждению глаза.

Обеспечение лазерной безопасности

Методы и средства защиты от воздействия лазерного излучения можно подразделить на организационные, инженерно-технические и средства индивидуальной защиты. Надежной защитой от случайного попадания на человека является экранирование луча световодом на всем пути его действия. В качестве средств индивидуальной защиты применяются специальные защитные очки, стекла в которых подбираются в соответствии с ГОСТ 9411-81Е; технологические халаты и перчатки, изготавливаемые из хлопчатобумажной ткани светло-зеленого или голубого цвета.

Мероприятия по защите от СДЯВ

Для спасения жизни поражённых отравляющими веществами необходимо применять антидоты (противоядия). Эффективность антидотов проявляется только в начальных стадиях отравления (5 мин.).

Антидоты способны обезвреживать СДЯВ, попавшие в организм человека. Некоторые антидоты связывают яд, образуя в организме безвредные соединения, другие конкурируют с ядом по действию на ферменты, рецепторы, физиологические системы человека. Они внедряются внутрь путём ингаляции, в виде таблеток или инъекции заранее или сразу после отравления.

Для повышения устойчивости организма к действию вредных веществ, применяются лекарственные препараты, называемые протекторами.

Если человек неожиданно попадает в зону действия отравляющих веществ, не имея при себе никаких защитных средств, то необходимо закрыть нос и рот платком, смоченным водой, нашатырным спиртом, содовым раствором, мочой и быстро покинуть зону в направлении перпендикулярном движению воздуха.

В экстренных случаях применяют изолирующие противогазы. Они позволяют работать там, где полностью отсутствует кислород и даже под водой на глубине до 7 метров. Принцип работы основан на выделении кислорода из химических веществ, при поглощении углекислого газа и влаги, выдыхаемых человеком. Время работы в изолирующем противогазе в зависимости от выполняемой работы может продолжаться от 45 мин до 3 часов.

Международные организации по проблемам защиты от радиации.

Средства защиты организмов от излучения…

Вследствие этого человечество, несмотря на малую изученность данной проблемы, активно занимается разработкой средств и мер защиты организмов от радиации.

Так, например, для защиты от воздуха, заражённого радиоактивными частицами можно применять противогазы и респираторы (для шахтёров). Также есть общие методы зажиты такие как:

увеличение расстояния между оператором и источником;

сокращение продолжительности работы в поле излучения;

экранирование источника излучения;

дистанционное управление;

использование манипуляторов и роботов;

полная автоматизация технологического процесса;

использование средств индивидуальной защиты и предупреждение знаком радиационной опасности;

постоянный контроль над уровнем излучения и за дозами облучения персонала.

К средствам индивидуальной защиты можно отнести противорадиационный костюм с включением свинца. Лучшим поглотителем гамма-лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.

Скандинавская компания Handy-fashions.com занимается разработкой защиты от излучения мобильных телефонов, так, например, в этом (2003) году она представила жилет, кепку и шарф предназначенные для защиты от вредного изучения мобильных телефонов. Для их производства используется специальная антирадиационная ткань. Только карман на жилетке выполнен из обычной ткани для устойчивого приёма сигнала. Стоимость полного защитного комплекта от 300 долларов. Защита от внутреннего облучения заключается в устранении непосредственного контакта работающих с радиоактивными частицами и предотвращение попадания их в воздух рабочей зоны. Необходимо руководствоваться нормами радиационной безопасности, в которых приведены категории облучаемых лиц, дозовые пределы и мероприятия по защите, и санитарными правилами, которые регламентируют размещение помещений и установок, место работ, порядок получения, учета и хранения источников излучения, требования к вентиляции, пылегазоочистке, обезвреживанию радиоактивных отходов и др. Также для защиты помещений с персоналом, в Пензенской государственной архитектурно-строительной академии ведутся разработки по созданию «высокоплотной мастики для защиты от радиации». В состав мастик входят: связующее - резорцино-формальдегидная смола ФР-12, отвердитель - параформальдегид и наполнитель - материал высокой плотности. Известно, что и в медицине для лечения рака применяется способ лучевой терапии, т.е. облучения раковых клеток. Облучение уничтожает раковые клетки, но убивает и только что пересаженные из костного мозга донора стволовые клетки. Решением этой проблемы занялся институт Паттерсона в Манчестере под руководством доктора Радж Чопра (Raj Chopra). Они усовершенствовали метод пересадки стволовых клеток донора больному, который применяется в некоторых случаях при неэффективности стандартных схем. Этим клеткам была добавлена защита от лучевой терапии. Ученые предложили вводить при помощи вируса в донорские клетки специальный ген, который защищает их от повреждающего действия лучевой терапии. Манчестерские ученые, которым удалось на практике создать такие устойчивые к радиации клетки, надеются, что их присутствие в организме поможет активизировать противоопухолевый иммунитет.

) Настоящая методика позволяет осуществлять прогнозирование масштабов зон заражения при авариях на технологических емкостях и хранилищах, при транспортировке железнодорожным, трубопроводным и другими видами транспорта, а также в случае разрушения химически опасных объектов /2/.

2) Методика распространяется на случай выброса СДЯВ в атмосферу в газообразном, парообразном, или аэрозольном состоянии /2/.

3) Масштабы заражения СДЯВ в зависимости от их физических свойств и агрегатного состояния рассчитываются для первичного и вторичного состояния облаков :

- для сжиженных газов – отдельно для первичного и вторичного облака;

- для сжатых газов – только для первичного облака;

- для ядовитых жидкостей , кипящих выше температуры окружающей среды - только для вторичного облака /2/.

4) Исходные данные для прогнозирования масштабов заражения СДЯВ:

Общее количество СДЯВ на объекте и данные о размещении их запасов в технологических емкостях и трубопроводах;

Количество СДЯВ, выброшенных в атмосферу, и характер их разлива на подстилающей поверхности («свободно», «в поддон» или «в обваловку»);

Высота поддона или обваловки складских емкостей;

Метеорологические условия: температура воздуха, скорость ветра на высоте 10м (на высоте флюгера), степень вертикальной устойчивости воздуха /2/ (приложение А).

5) При заблаговременном прогнозировании масштабов заражения на случай производственных аварий в качестве исходных данных рекомендуется принимать: выброс СДЯВ (Q0) – количество СДЯВ в максимальной по объему единичной емкости (технологической, складской, транспортной и др.) , метеорологические условия – инверсия, скорость ветра 1 м/с /2/.

Для прогноза масштабов заражения непосредственно после аварии должны браться конкретные данные о количестве выброшенного (разлившегося) СДЯВ и реальные метеоусловия /2/.

6) Внешние границы зоны заражения СДЯВ рассчитываются по пороговой токсодозе при ингаляционном воздействии на организм человека.

НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ ВРЕДНЫХ ВЕЩЕСТВ НА СРЕДУ ОБИТАНИЯ

Основными источниками загрязнения атмосферы являются естественные (вулканические извержения, пылевые бури, лесные пожары, природный метан, окисление серы и сульфатов и т. п.) и антропогенные (сжигание топлива в промышленных и бытовых установках, промышленность, автотранспорт, теплоэлектростанции, промышленные энергоустановки, предприятия черной металлургии, испарения нефтепродуктов и т. п.) источники. В результате загрязнения возникают следующие негативные последствия:

1) превышение предельно допустимых компонентов многих токсичных веществ в городах и населенных пунктах;

2) образование смога при интенсивных выбросах оксида азота и углеводородов;

3) выпадение кислотных дождей при интенсивных выбросах оксидов серы и азота;

4) появление парникового эффекта при повышенном содержании вышеперечисленных химических веществ и пыли в атмосфере, что способствует повышению средней температуры Земли;

5) разрушение озонового слоя при поступлении оксида азота и соединений хлора в него, что создает опасность ультрафиолетового облучения.

Источниками загрязнения гидросферы являются биологические, химические и физические источники. Антропогенное воздействие на гидросферу приводит к снижению запасов воды, изменению состояния фауны и флоры водоемов, нарушению круговорота многих веществ в биосфере, снижению биомассы планеты и, как следствие, уменьшению воспроизводства кислорода.

Источниками и веществами, загрязняющими почву, являются: тяжелые металлы и их соединения, циклические углеводороды, бензопирен, радиоактивные вещества, нитраты, нитриты, фосфаты, пестициды и т. п. Нарушение верхних слоев земной коры происходит при добыче полезных ископаемых и их обогащении; захоронении бытовых и промышленных отходов, при проведении военных учений или испытаний и т. п. Также почвенный покров существенно загрязняется осадками в зонах рассеивания различных выбросов в атмосфере, пахотные земли загрязняются при внесении удобрений и применении пестицидов.

Антропогенное воздействие на почву сопровождается:

1) отторжением пахотных земель и уменьшением их плодородия;

2) чрезмерным насыщением токсичными веществами растений, что неизбежно приводит к загрязнению продуктов питания растительного и животного происхождения;

3) нарушением биоценозов вследствие гибели насекомых, птиц, животных, некоторых видов растений;

4) загрязнением грунтовых вод, особенно в зоне свалок и сброса сточных вод.

17) Антропогенные опасности среды обитания: источники и уровни загрязнения атмосферного воздуха.

Источником загрязнения атмосферы могут быть любой физический агент, химическое вещество или биологический вид (в основном микроорганизмы), попадающие в окружающую среду или образующиеся в ней в количестве выше естественных. Под атмосферным загрязнением понимают присутствие газов, паров, частиц, твердых и жидких веществ, тепла, колебаний, излучений, которые неблагоприятно влияют на человека, животных, растения, климат, материалы, здания и сооружения.

По происхождению загрязнения делят на природные, вызванные естественными, часто аномальными, процессами в природе, и антропогенные, связанные с деятельностью человека.

На антропогенные загрязнения приходится большая доля в загрязнении атмосферы. Они связаны с развитием производственной деятельности человека и подразделяются на локальные и глобальные. Локальные загрязнения связаны с городами и промышленными регионами. Глобальные загрязнения влияют на биосферные процессы на Земле и распространяются на огромные расстояния, так как воздух находится в постоянном движении. Глобальные загрязнения атмосферы усиливаются из-за того, что вредные вещества из нее попадают в почву, водоемы, а затем снова поступают в атмосферу.

Источники загрязнения атмосферы разделяют на механические, физические и биологические. Механические загрязнения – пыль, фосфаты, свинец, ртуть, образующиеся при сжигании органического топлива и в процессе производства строительных материалов. Физические загрязнения – тепловые,

световые, шумовые, электромагнитные, радиоактивные. Биологические загрязнения являются следствием размножения микроорганизмов и антропогенной деятельности.

Распространенные токсичные вещества, загрязняющие атмосферу:

1) оксид углерода (образуется при лесных пожарах, окислении терпенов и др.);

2) диоксид серы (образуется при вулканических извержениях, окислении серы и сульфатов, рассеянных в море; сжигании топлива в промышленных установках);

3) оксид азота (его источниками являются лесные пожары; автотранспорт, теплоэлектростанции);

4) углеводороды (его источники – лесные пожары, природный метан и природные терпены; автотранспорт, сжигание отходов, холодильная техника, химические заводы, нефтеперерабатывающие заводы);

5) пыль (возникает в результате вулканических извержений, пылевых бурь, лесных пожаров; сжигания топлива в промышленных установках и т. п.).

18) Антропогенные опасности среды обитания: источники и уровни загрязнения гидросферы.

Основными источниками загрязнения и засорения гидросферы (водоемов) является недостаточное очищение сточных вод промышленных и коммунальных предприятий, крупных животноводческих комплексов, отходы производства при разработке рудных ископаемых; воды шахт, рудников; сбросы водного и железнодорожного транспорта; пестициды и т. д. Загрязняющие вещества, попадая в природные водоемы, приводят к качественным изменениям воды, которые проявляются в изменении химического состава воды, в наличии плавающих веществ на поверхности воды и откладывании их на дне водоемов.

Производственные сточные воды загрязнены отходами и выбросами производства. Количественный и качественный состав зависит от отрасли промышленности и ее технологических процессов. Отходы делят на две основные группы: содержащие неорганические примеси (в том числе и токсические) и содержащие яды. К первой группе относятся сточные воды содовых, обогатительных фабрик свинцовых, никелевых руд, в которых содержатся кислоты, щелочи, ионы тяжелых металлов и др. Сточные воды этой группы в основном изменяют физические свойства воды. Сточные воды второй группы сбрасывают нефтеперерабатывающие заводы, предприятия органического синтеза и др.

В стоках содержатся разные нефтепродукты, аммиак, альдегиды, смолы, фенолы и т. п. Вредоносность действия сточных вод этой группы заключается в окислительных процессах, вследствие которых уменьшается содержание в воде кислорода, увеличивается биохимическая потребность в нем. Рост населения, возникновение новых городов увеличивают поступление бытовых стоков во внутренние водоемы, загрязняя их и болезнетворными бактериями.

Все вышеперечисленные факторы приводят к сбою биологического и физического режимов водоемов.

Для очистки сточных вод применяют механический, химический, физико-химический и биологический методы. Когда они применяются вместе, метод очистки и обезвреживания сточных вод является комбинированным. Механический метод позволяет удалить из бытовых сточных вод до 60–75 % нерастворимых примесей, а из промышленных – до 95 %; химический метод – до 95 % нерастворимых примесей и до 25 % – растворимых. Физико-химический метод позволяет удалить тонкодисперсные и растворенные неорганические примеси и разрушить органические и плохо окисляемые вещества. Существует несколько типов биологических устройств по очистке сточных вод: биофильтры, биологические пруды.

Существует много международных организаций, разрабатывающих нормативы и законодательство в

области радиационной безопасности, и отслеживающих все юридические аспекты в этой области (МАГАТЭ,

МКРЗ, ИСАГ и др.). Еще больше организаций, так и ли иначе отслеживающих состояние дел в области

ядерной безопасности (ВОЗ, МКРЗ, МОТ, ПОЗ и др.). Ниже перечислены лишь некоторые их них.

АЯЭ/ОЭСР - Агентство по ядерной энергии Организации экономического сотрудничества и развития.

ВАО АЭС - Всемирная ассоциация организаций, эксплуатирующих АЭС.

ВОЗ - Всемирная организация здравоохранения.

ЗАЯРО - Западноевропейская ассоциация ядерных регулирующих органов

ИНСАГ - Международная консультативная группа по ядерной безопасности, функционирующая под эгидой

МАГАТЭ с 1985 г. и разрабатывающая концептуальные документы по ядерной безопасности.

МАГАТЭ (IAEA) - Международное Агентство по атомной энергии – создано в 1957 для развития

международного сотрудничества в области мирного использования атомной энергии. Объединяет более 100

государств. Местопребывания - Вена.

МКРЕ - Международная Комиссия по радиологическим единицам и измерениям

МКРЗ - Международная Комиссия по радиологической защите, неправительственная научная организация,

основанная в 1928 для разработки основных принципов и рекомендаций по радиационной защите.

МАЯРО - Международная ассоциация ядерных регулирующих органов.

МОТ - Международная организация труда.

МУКРБ - Межучрежденческий Комитет по радиационной безопасности, создан в 1990 для согласования

вопросов радиационной безопасности на международном уровне. Цель МУКРБ - координация

международных усилий в различных направлениях радиационной безопасности. Комитет обеспечил

возможность международным организациям участвовать в консультациях и сотрудничестве в этой области.

Членами Комитета стало большинство перечисленных здесь учреждений.

НКДАР ООН - Научный Комитет Организации Объединенных Наций по действию атомной радиации,

созданный ООН в 1955 для сбора, оценки и распространения информации о воздействии ионизирующего

излучения на здоровье населения.

ПОЗ - Панамериканская организация здравоохранения.

ФАО - Продовольственная и сельскохозяйственная организация Объединенных Наций.

Общая характеристика токсических веществ (ядов).

Что такое производственные яда?

Производственная яд (вредное вещество) - это вещество, которая вследствие нарушения требований безопасности при контакте с организмом может вызывать заболевания или отклонения в состоянии здоровья как при воздействии в вещества, так и в отдаленные периоды жизни современного и будущих поколений.

Из данного определения видно, что почти все химические соединения потенциально вредными веществами в производственных условиях они могут находиться в разном агрегатном состоянии в виде паров, газов, тумана, дыма За а классификации М О Фукса к дыму относятся аэрозоли конденсации с твердой дисперсной фазой, туману - все аэрозоли, имеющих жидкую дисперсную фазфазу.

Как классифицируются производственные яда?

характеру воздействия на организм человека (общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию);

путями проникновения в организм (действие через дыхательные пути, желудочно-кишечную систему, кожные покровы);

химической сущностью (органические, неорганические, смешанные и другие);

степени токсичности: чрезвычайно токсичные (ПДК в воздухе составляет до 0,1 мг/м3), высокотоксичные (ПДК от 0,1 до 1мг/м3), умеренно токсичные (ПДК от 1,1 до 10,0 мг/м3) над 10,0 мг/м3)

степени воздействия на организм (чрезвычайно опасные, высокоопасные, умеренно опасные и малоопасные)

Общая характеристика яда?

Патологические процессы, развивающиеся под действием производственных ядов, вызывают в организме человека к нарушению функционального и структурного состояния, необходимого для его нормальной жизнедеятельности

Характер и степень таких изменений под действием яда обусловлен их концентрацией (дозой), времени действия и периодом вывода (елюминации) из организма Токсический эффект химических веществ зависит от индивидуальных х свойств личности, определяется состоянием здоровья человеки.

Промышленные яды могут оказывать на организм человека как местную, так и общее действие

Понятие приемлемого риска.

Приемлемый риск - это такой риск, который в данной ситуации (при данных обстоятельствах, при данном уровне развития науки и технологий) допустим при существующих общественных ценностях. Социально приемлемый риск оценивает не только и не столько абсолютные значения риска с учетом многих аспектов жизнедеятельности, сколько существующие тенденции роста или снижения рисков различных консервативных и новых видов деятельности принимаемых обществом. Приемлемый риск уместно определять на различных уровнях - от организации отрасли экономики до государства.

Необходимость формирования концепции приемлемого (допустимого) риска обусловлена невозможностью создания абсолютно безопасной деятельности (технологического процесса). Приемлемый риск сочетает в себе технические, экономические, социальные и политические аспекты. На практике это всегда компромисс между достигнутым в обществе уровнем безопасности (исходя из показателей смертности, заболеваемости, травматизма, инвалидности) и возможностями его повышения экономическими, технологическими, организационными и другими методами. Экономические возможности повышения безопасности технических и социотехнических систем не безграничны. Так, на производстве, затрачивая чрезмерные средства на повышение безопасности технических систем, можно ослабить финансирование социальных программ производства (сокращение затрат на приобретение спецодежды, медицинское обслуживание, санаторно-курортное лечение и др.).

В настоящее время с учетом международной практики принято считать, что действие техногенных опасностей (технический риск) должно находиться в пределах от 10 -7 - 10 -6 (смертельных случаев чел -1 · год -1), а величина 10 -6 является максимально приемлемым уровнем индивидуального риска. В российском законодательстве в области безопасности эта величина используется для оценки пожарной безопасности и радиационной безопасности.

Понятие опасностей и их классификация.

Опасность - центральное понятие БЖД, под кото­рым понимаются любые явления, угрожающие жизни и здоровью человека.

Количество признаков, характеризующих опасность, может быть увеличено или уменьшено в зависимости от целей анализа. Данное определение опасности в БЖД поглощает существующие стандартные понятия (опасные и вредные производственные факторы), являясь более объемным, учитывающим все формы деятельности.

Опасность хранят все системы, имеющие энергию, химически или биологически активные компоненты, а также характеристики, несоответствующие условиямжизнедеятельности человека.

Опасности носят потенциальный характер. Актуализация опасностей происходит при определенных условиях, именуемых причинами. Признаками, определяющими опасность, являются: угроза для жизни; возможность нанесения ущерба здоровью; нарушение условий нормального функционирования органов и систем человека. Опасность - понятие относительное.

Признаками, определяющими опасность являются:

1) угроза жизни;

2) возможность нанесения ущерба здоровью;

3) нарушение условий нормального функционирования организма человека и экологических систем.

Классификация опасностей

1) По происхождению опасности бывают: природные, техногенные, экологические, социальные, биологические, антропогенные.

2) По локализации опасности бывают: связанные с литосферой, гидросферой, атмосферой, космосом.

3) По вызываемым последствиям: утомление, заболевания, травмы, аварии, пожары, летальные исходы и т. д.

4) По приносимому ущербу: социальные, технические, экологические, экономические.

5) По сфере проявления опасностей: бытовые, спортивные, производст-венные, дорожно-транспортные, военные.

6) По структуре (строению) опасности делятся на простые и производст-венные, порождаемые взаимодействием простых.

7) По реализуемой энергии опасности делятся на активные и пассивные.

К пассивным относятся опасности, активизирующиеся за счет энергии, носителем которой является сам человек (например, острые предметы).

8) По времени проявления: импульсивные и кумулятивные.

Источники формирования опасности.

1. Сам человек, его деятельность, средства труда;

2. Окружающая среда;

3. Явления и процессы, возникающие в результате взаимодействия человека и окружающей среды.

В свете последних событий на АЭС в Японии, а также при прочтении ежедневных новостей в интернете, многих людей охватывает если не паника, то уж наверняка волнение за здоровье близких. Как защитить себя от радиации, как сберечь жизнь и здоровье знают немногие. МирСоветов собрал для Вас советы специалистов.

Знание – сила!

Если бы 25 лет назад факт трагедии на Чернобыльской АЭС не скрывался, а централизовано были бы приняты необходимые меры, многие жизни удалось бы спасти. Об этом говорят с экранов телевизоров ежегодно в день аварии. К сожалению, до сих пор никто толком не упомянул о том, как именно защитить себя от радиационного облучения. Попробуем разобраться.
Думаю, излишне будет рассказывать о том, что такое радиация, да и о самом облучении. Этому нас учили в школах на уроках гражданской обороны. Не станем давать советы в духе «что делать, если вы увидели рядом ядерный гриб». Сегодня речь пойдет о мерах защиты от радиации, которые любой из нас может сам себе обеспечить.
Со словом «радиация» у рядового обывателя ассоциируется слово «йод». Его нужно пить при загрязнении, так нас заверяют еще со времен чернобыльской катастрофы. И люди пьют! И детей заставляют. А в результате – сильнейший пищевода. На одном сайте встретился рецепт «лечебного бутерброда». Автор советует наждаком натереть свинцовой крошки, смешать с маслом, намазать на хлеб… и спать спокойно. Но долой средневековые дикости! Существуют и более гуманные, а главное, действенные методы.
Итак, если вы оказались в зоне радиоактивного загрязнения, первая мысль, которая должна вас посетить – как уехать подальше от источника радиации. Чем меньшим по времени будет контакт вашего организма с радиоактивными веществами, тем лучше для вас и вашего здоровья. Если такой возможности пока нет, принимаем следующие меры:
  • не выходим из помещений, 2-3 раза в день делаем влажную (именно влажную!) уборку;
  • как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов;
  • чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц;
  • если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно;
  • в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться».
Есть несколько способов очистить радиоактивную воду. Дело в том, что чаще всего вода загрязняется радоном – газом, очень вредным для человека. Причем, такая вода опасна не только для питья, намного вреднее её испарения. Некоторые специалисты советуют пользоваться для очистки угольными фильтрами (в принципе, обычными бытовыми кувшинами). Только срок годности сменной кассеты резко сокращается, поэтому менять её нужно как можно чаще. В иных источниках рекомендуют кипячение – якобы оно полностью очищает воду от радона. Эффективность этих методов, к сожалению, не стопроцентная.

Спасительное меню

Итак, из своего меню убираем – рыбу, грибы, костные бульоны и свинину. Эти продукты быстро накапливают в себе радионуклиды. С фруктов срезаем кожуру, у капусты удаляем кочерыжку, овощи вымачиваем в воде, мелко режем и провариваем. Налегаем на селенсодержащие продукты – печень, сердце, яйца птицы, (кроме печени, она также накапливает в себе радионуклиды). Именно селен защищает от образования раковых опухолей. Покупаем и используем в пищу морскую или йодированную соль.
Некоторые предприимчивые производители пользуются моментом, выпускают, к примеру, йогурты, которые защищают от радиации. Думаю, вы понимаете, что это не более чем пиар-ход.
Есть мнение, что красное вино (и зеленый чай!) выводят радионуклиды из организма. Не совсем верное утверждение. Выпивая 200 мл вина в сутки, вы лишь защищаете организм от радиации. Такая своеобразная профилактика. Кстати, подобными свойствами обладает и этиловый спирт – этот факт доказали исследования на мышах.
Хотите вывести тяжелые металлы из организма? Ешьте варенье, джемы, желе и мармелад. Дело в том, что при производстве этих сладостей используется пектин. По мнению российских ученых, это вещество быстро связывает радионуклиды и практически полностью выводит их из организма с калом и мочой. Кстати, приобрести пектин можно в любом супермаркете – обратите внимание на пакетики в рядах со специями. Ну а дальше, варите желе с чудо-порошком и наслаждайтесь. По-моему, можно применять этот метод и для профилактики. Эффективно и, главное, безвредно!

Медикаментозная защита от радиации

Несколько удивил тот факт, что российские ученые уже создали вакцину против радиации. Жаль, что в аптеки она еще не поступила, а всего закончились испытания на животных. Результаты порадовали многих, только вот сделать «прививку от радиации» мы сможем еще не скоро.
Тем не менее, можно принимать некоторые медикаменты. Но тут читатели МирСоветов должны понимать, что через пищеварительный тракт поступает в несколько раз меньшее количество радионуклидов, несоизмеримо меньше, чем через кожу. И чтобы перечисленные далее препараты хоть сколь-нибудь помогли, принимать их нужно уж очень часто. Для начала, . Итак, 2-3 таблетки активированного угля перед едой от гибели вас не спасут, но некоторую долю радионуклидов выведут. Тем же действием обладают и энтеросгель, атоксил. Снижает влияние радиации элеутерококк (1/4 – 1/2 ч.л. добавьте в чай 2 раза в день). Только без фанатизма – у этого средства есть противопоказания (читайте инструкцию).
Принимать йодсодержащие препараты не рекомендуют, особенно людям с нарушенной функцией эндокринной системы. Лучше отдать предпочтение любому аптечному комплексу мультивитаминов. Так вы себе и не навредите, и гипервитаминоз не заработаете (но в ряде случаев все-таки возможен).

Как замерить уровень радиации?

Если вы не доверяете информации из официальных источников и СМИ об уровне радиации в вашей местности, покупайте . Этот прибор быстро определит уровень радиации именно в вашем доме/квартире/офисе. Удовольствие, нужно сказать, не дешевое. Более того, как показал поиск по интернет-магазинам, даже дефицитное. Тем не менее, если будет возможность, приобретайте бытовой дозиметр. Самые простые с минимумом функций обойдутся в сумму от 100 долларов и выше. Покупать «навороченный» с массой функции не рационально, ибо вам эти функции вряд ли пригодятся.
Хочется сказать о нормах радиационного фона. Они различны для всех стран и даже областей одного государства. По некоторым источникам типичной или нормальной считается цифра, не превышающая 15-20 мкР/час, допустимой – 25-30 мкР.
Желаем Вам, чтобы показания на дозиметре никогда бы не превысили нормы. Если Вы можете поделиться своим методом защиты от радиации, мы будем только рады.
Будьте здоровы!

Каждый житель планеты Земля получает различные дозы радиоактивного излучения как от естественных источников (космические лучи, месторождения радиоактивных элементов), так и от искусственных источников.

При долгом облучении или больших дозах радиация может разрушать клетки, повреждать ткани органов, может стать причиной злокачественных новообразований и гибели организма.

Что такое радиация?

Радиоактивностью называют неустойчивость ядер атомов, что проявляется в их способности к самопроизвольному распаду, который сопровождается выходом ионизирующего излучения, то есть радиации. Энергия этого излучения настолько велика, что воздействует на вещество, создавая новые ионы разных знаков.

Источники радиации

Существует два способа облучения. Первый, если радиоактивные вещества находятся вне организма и облучают его снаружи – это внешнее облучение. Второй способ – внутренний: радионуклиды попадают внутрь организма с воздухом, пищей и водой.

Источники радиоактивного излучения объединяются в две большие группы: естественные и искусственные, то есть созданные человеком. Ученые заявляют – именно земные источники радиации ответственны за большую часть облучения, которому подвергается человек.

Естественные виды излучения попадают на поверхность Земли либо из космоса, либо от радиоактивных веществ, находящихся в земной коре. Интенсивность влияния космического излучения зависит от высоты над уровнем моря и широты, поэтому люди, живущие в горных районах, и те, кто постоянно пользуется воздушным транспортом, подвергаются дополнительному риску облучения.

Излучение земной коры в основном представляет опасность только вблизи месторождений. Но радиоактивные частицы могут попасть к человеку в виде стройматериалов, фосфорных удобрений, а затем и на стол в виде продуктов питания. Причиной радиоактивности строительных материалов становится радон - радиоактивный инертный газ без цвета, вкуса и запаха. Радон скапливается под землей, а на поверхность же он выходит при добыче полезных ископаемых или через трещины в земной коре.

Открытие радиоактивности послужило толчком для прикладного использования этого явления, в результате чего были созданы искусственные источники радиоактивного излучения, которые применяются в медицине, для производства энергии и атомного оружия, для поиска полезных ископаемых и обнаружения пожаров, в сельском хозяйстве и археологии. Опасность представляют и предметы, вывезенные из «запретных» зон после аварий АЭС, и некоторые драгоценные камни.

В медицине человек подвергается радиации при прохождении рентгеновских обследований, при использовании радиоактивных веществ для диагностики или лечения различных заболеваний. Также ионизирующие излучения используют для борьбы со злокачественными болезнями. Лучевая терапия воздействует на клетки биологической ткани с целью устранения их способности к делению и размножению.

Открытие такого явления как радиация привело к созданию ядерного оружия, испытания которого в атмосфере являются дополнительным источником облучения населения Земли. Почти 40 лет атмосфера Земли сильно загрязнялась радиоактивными продуктами атомных и водородных бомб.

Атомные электростанции (АЭС) также являются источником радиации, так как в основе производства электроэнергии лежат цепные реакции деления тяжелых ядер. Одним из факторов облучения человека после аварий на атомных электростанциях является техногенный радиационный фон атомной энергетики, который при обычной работе ядерной установки невелик. В зависимости от характера аварии на атомной электростанции, радиоактивные вещества, выброшенные в атмосферу, попадают в окружающую среду и переносятся воздушными потоками на различные расстояния от эпицентра аварии. Вся среда обитания, флора, фауна, находящаяся в зоне взрыва, будет подвергаться облучению. Радиоактивное облако осаждается на землю с дождевыми осадками.

Лекция

Как защититься от радиации?

Радиация может попадать в наш организм как угодно, и часто виной этому становятся предметы, не вызывающие подозрений. Действенный способ обезопасить себя - использовать дозиметр радиации. Этим миниатюрным прибором можно самостоятельно контролировать безопасность и экологическую чистоту окружающего вас пространства и предметов.

При угрозе реального радиоактивного заражения первое, что надо сделать - это спрятаться. Фактически важно как можно быстрее укрыться в помещении, защитить органы дыхания и защитить тело. В помещении с закрытыми окнами и дверями и с отключённой вентиляцией можно снизить потенциальное внутреннее облучение. Обычные хлопчатобумажные ткани при использовании в качестве фильтров уменьшают концентрацию аэрозолей, газов и паров в 10 раз и более. При этом защитные свойства ткани и бумаги можно увеличить, если намочить их.

Защитить кожу от радиоактивного заражения можно тщательно омыв тело, а волосы и ногти необходимо дезинфицировать специальными средствами. Одежду желательно уничтожить.

Если не удалось избежать контакта с радиоактивными элементами, то с действием пагубных веществ можно бороться с помощью особых йодовых таблеток. Также врачи рекомендуют наносить йодовую сеточку на тело или принять одну ложку морской капусты. С йодом лучше не переусердствовать, так как употребление йода без достаточных оснований и в чрезмерных количествах не только бесполезно, но и опасно. Если вы опасаетесь радиации, то можно ввести в свой ежедневный рацион морепродукты.

Есть мнение, что от радиации защищает алкоголь, который снижает восприимчивость к радиации, пишет dozimetr.biz. Но давно разработаны современные противорадиационные препараты, которые, конечно, гораздо надёжнее алкоголя.

Чтобы защитить себя от радиации в обычной жизни, избегайте потребления в пищу неизвестно как выращенных ранних овощей.

Больше всего от радиации страдают половые органы, молочные железы, костный мозг, легкие, глаза. Поэтому некоторые врачи рекомендуют лишь в случае острой необходимости обследоваться на медицинских рентгеновских аппаратах: не чаще одного раза в год.

Не редкость случаи, когда общеупотребительные предметы оказывались сильно излучающими. Часы с самосветящимся циферблатом - тоже источник «рентгенов», а уран могут использовать для придания блеска искусственным фаpфоpовым зубам. Однажды сильным источником излучения оказалась бетонная плита, использованная в конструкции жилого дома, пишет Zasovetom.

Если говорить о дозах радиации, то она вредна для жизни в любых дозах. Последствия облучения могут проявиться через 10-20 лет или в следующих поколениях. При этом для детей радиация гораздо более опасна, чем для взрослых. 4/5 облучения обычный человек получает от естественного фона, а атомная электростанция при соблюдении всех правил эксплуатации - безопасна. «Экономия тепла» в помещениях, то есть непpоветpивание комнат или офисов, и рентгеновские обследования вызывают гораздо большее облучение, чем соседняя АЭС.



© 2024 solidar.ru -- Юридический портал. Только полезная и актуальная информация